cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A280488 a(n) = n / A280489(n) = n / gcd(n,A241909(n)).

Original entry on oeis.org

1, 1, 3, 4, 5, 2, 7, 8, 3, 10, 11, 12, 13, 14, 5, 16, 17, 6, 19, 4, 7, 22, 23, 24, 25, 26, 27, 28, 29, 2, 31, 32, 11, 34, 35, 36, 37, 38, 13, 40, 41, 14, 43, 44, 9, 46, 47, 48, 49, 10, 17, 52, 53, 18, 55, 8, 19, 58, 59, 12, 61, 62, 63, 64, 65, 22, 67, 68, 23, 14, 71, 72, 73, 74, 5, 76, 77, 26, 79, 80, 81, 82, 83, 12, 85, 86, 29, 88, 89, 30, 91, 92, 31
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = n / A280489(n).

A331595 a(n) = gcd(A122111(n), A241909(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 3, 16, 5, 3, 3, 32, 5, 64, 3, 18, 7, 128, 15, 256, 5, 18, 3, 512, 7, 3, 3, 5, 5, 1024, 15, 2048, 11, 18, 3, 18, 7, 4096, 3, 18, 7, 8192, 15, 16384, 5, 50, 3, 32768, 11, 3, 45, 18, 5, 65536, 7, 108, 7, 18, 3, 131072, 7, 262144, 3, 50, 13, 108, 15, 524288, 5, 18, 45, 1048576, 11, 2097152, 3, 15, 5, 18, 15, 4194304, 11, 7, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Crossrefs

Cf. A122111, A241909, A241916, A331596 (number of distinct prime factors), A331597, A331598, A331599, A331600.
Cf. also A280489, A280491.

Programs

  • Mathematica
    Array[If[# == 1, 1, GCD @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 82] (* Michael De Vlieger, Jan 24 2020, after JungHwan Min at A122111 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m));
    A331595(n) = gcd(A122111(n), A241909(n));

Formula

a(n) = gcd(A122111(n), A241909(n)).
a(A241916(n)) = a(n).

A280491 a(n) = gcd(n,A122111(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 6, 1, 1, 9, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 20, 3, 2, 1, 2, 1, 2, 1, 4, 1, 30, 1, 1, 3, 2, 1, 3, 1, 2, 3, 4, 1, 6, 1, 4, 5, 2, 1, 2, 1, 5, 3, 4, 1, 1, 1, 56, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 4, 3, 10, 1, 3, 1, 2, 75, 4, 1, 6, 1, 4, 1, 2, 1, 84, 1, 2, 3, 8, 1, 10, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 8, 15, 2, 1, 1, 1, 10, 3, 8, 1, 6, 1, 4, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Cf. A122111, A280490, also A280489.
Cf. A088902 (the fixed points, n for which a(n) = n).

Programs

Formula

a(n) = gcd(n,A122111(n)).
a(n) = n / A280490(n).
Other identities. For all n >= 1:
a(A122111(n)) = a(n).
Showing 1-3 of 3 results.