A280544 Expansion of 1/(1 - Sum_{k>=2} (1 - floor(2/d(k)))*x^k), where d(k) is the number of divisors (A000005).
1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 3, 0, 5, 2, 8, 3, 13, 5, 22, 10, 34, 18, 58, 31, 94, 57, 153, 99, 254, 172, 417, 302, 685, 523, 1136, 901, 1872, 1557, 3097, 2673, 5133, 4577, 8505, 7843, 14109, 13380, 23440, 22816, 38953, 38855, 64789, 66053, 107871, 112190, 179664, 190369, 299478, 322683, 499501, 546548
Offset: 0
Keywords
Examples
a(10) = 3 because we have [10], [6, 4] and [4, 6].
Links
- Eric Weisstein's World of Mathematics, Composite Number
- Index entries for sequences related to compositions
Programs
-
Mathematica
nmax = 59; CoefficientList[Series[1/(1 - Sum[(1 - Floor[2/DivisorSigma[0, k]]) x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
-
PARI
x='x+O('x^60); Vec(1/(1 - sum(k=2, 59, (1 - 2\numdiv(k))*x^k))) \\ Indranil Ghosh, Apr 03 2017
Formula
G.f.: 1/(1 - Sum_{k>=2} (1 - floor(2/d(k)))*x^k).
Comments