A280547 Smallest number k such that (k+1)^n - k^n is divisible by a square greater than 1.
4, 7, 3, 14, 1, 23, 3, 7, 2, 2, 1, 75, 3, 7, 3, 36, 1, 2476, 1, 1, 2, 165, 1, 14, 4, 7, 3, 149, 1, 2972, 3, 2, 4, 14, 1, 977, 4, 5, 1, 34, 1, 135, 2, 7, 4, 136, 1, 23, 2, 7, 2, 11, 1, 2, 3, 2, 4
Offset: 2
Examples
a(2) = 4 because (4+1)^2 - 4^2 = 9 is a square.
Programs
-
Mathematica
A280547 = {}; For[n = 2, n < 11, n++, k = 0; While[SquareFreeQ[(k + 1)^n - k^n], k++]; AppendTo[A280547, k]]; A280547 (* Robert Price, Feb 04 2017 *)
-
PARI
a(n) = {my(k = 1); while (issquarefree((k+1)^n - k^n), k++); k;} \\ Michel Marcus, Jan 14 2017
Extensions
a(19)-a(30) from Lars Blomberg, Jan 14 2017
a(31)-a(58) from Robert Price, Feb 04 2017
Comments