cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280611 Number of degree n products of distinct cyclotomic polynomials.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 24, 34, 52, 70, 102, 134, 194, 254, 352, 450, 610, 770, 1036, 1302, 1716, 2130, 2770, 3410, 4406, 5402, 6892, 8382, 10600, 12818, 16120, 19422, 24216, 29010, 35932, 42854, 52832, 62810, 76944, 91078, 111008, 130938
Offset: 0

Views

Author

Christopher J. Smyth, Jan 06 2017

Keywords

Comments

a(n) is also the number monic integer polynomials of degree n all of whose roots are distinct and of modulus 1. This follows from a classical result of Kronecker -- see link.

Examples

			a(3) = 6 because there are six degree-3 products of distinct cyclotomic polynomials, namely (z-1)(z^2+z+1), (z-1)(z^2+1), (z-1)(z^2-z+1), (z+1)(z^2+z+1), (z+1)(z^2+1) and (z+1)(z^2-z+1).
		

References

  • Boyd, David W.(3-BC); Montgomery, Hugh L.(1-MI), Cyclotomic partitions. In Number theory (Banff, AB, 1988), 7-25. Walter de Gruyter & Co., Berlin, 1990 ISBN:3-11-011723-1, MR1106647. [Asymptotics]

Crossrefs

Cf. A014197, A280709 (variant where z, as well as cyclotomic polynomials, is allowed in the product), A120963 (variant where repeated roots are allowed), A051894 (variant where both z and repeated roots are allowed), A280712 (Inverse Euler transform of sequence).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^EulerPhi@ i), {i, n E^2}], {x, 0, n}], {n, 0, 92}] (* Michael De Vlieger, Jan 10 2017 *)

Formula

G.f.: Product_{i>=1} (1 + x^phi(i)) = Product_{j>=1} (1 + x^j)^A014197(j), where phi(i)=A000010(i) is Euler's totient function.
This is also the Euler transform of A280712.
a(n) ~ exp(sqrt(105*zeta(3)*n/2)/Pi) * (105*zeta(3)/2)^(1/4) / (4*Pi*n^(3/4)). - Vaclav Kotesovec, Sep 02 2021