cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280712 Inverse Euler transform of A280611.

Original entry on oeis.org

2, 1, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 4, 0, 3, 0, 2, 0, 4, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 7, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 9, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 6, 0, 0, 0, 4, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Christopher J. Smyth, Jan 07 2017

Keywords

Comments

a(n) = b(n) for n odd, a(n) = b(n) - b(n/2) for n even >= 2, where b(n) = A014197(n) = the number of m with phi(m) = n.
Note that a(n) = 0 for all odd n > 1, and so a(n) = b(n) for n >= 3, n not a multiple of 4.

Examples

			a(4) = #{m:phi(m) = 4} - #{m:phi(m) = 2} = #{5,8,10,12} - #{2,4,6} = 4-3 = 1.
		

Crossrefs

Programs

Formula

Euler transform of sequence = Product_{k>=1} (1-x^k)^(-a(k)) is the g.f. of A280611.

Extensions

More terms from Antti Karttunen, Nov 09 2018

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A120963 Number of monic polynomials with integer coefficients of degree n with all roots on the unit circle; number of products of cyclotomic polynomials of degree n.

Original entry on oeis.org

1, 2, 6, 10, 24, 38, 78, 118, 224, 330, 584, 838, 1420, 2002, 3258, 4514, 7134, 9754, 15010, 20266, 30532, 40798, 60280, 79762, 115966, 152170, 217962, 283754, 401250, 518746, 724866, 930986, 1287306, 1643626, 2250538, 2857450, 3878298, 4899146, 6594822
Offset: 0

Views

Author

Keywords

Comments

Also the number of types of crystallographic rotations and reflection-rotations in n-dimensional Euclidean space. - Andrey Zabolotskiy, Jul 08 2017

Examples

			The six polynomials of degree 2 consist of 3 irreducible cyclotomic polynomials: x^2+1, x^2+x+1 and x^2-x+1 and 3 products of 2 linear cyclotomic polynomials: x^2+2x+1, x^2-1 and x^2-2x+1.
The six plane crystallographic operations are the identity operation, rotations by 2 Pi/k with k = 2,3,4,6, and a reflection.
		

References

  • Boyd, David W.(3-BC); Montgomery, Hugh L.(1-MI), Cyclotomic partitions. In Number theory (Banff, AB, 1988), 7-25. Walter de Gruyter & Co., Berlin, 1990 ISBN:3-11-011723-1, MR1106647. [Asymptotics]

Crossrefs

Cf. A014197, A051894, A280611 (variant where repeated roots are not allowed).
See also A341710, A341711, A341712.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; nops(invphi(n)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 04 2019
  • Mathematica
    terms = 40;
    S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]),
         {k, 1, m*terms}] + O[x]^terms, x];
    S[m = 1];
    S[m++];
    While[S[m] != S[m-1], m++];
    S[m] (* Jean-François Alcover, Apr 14 2017, after Christopher J. Smyth, updated May 13 2022 *)

Formula

Euler transform of A014197.
G.f.: Product_{k>=1} 1/(1-x^phi(k)) = Product_{j>=1} (1-x^j)^(-A014197(j)). - Christopher J. Smyth, Jan 08 2017
log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. - Vaclav Kotesovec, Sep 02 2021

A280709 The number of monic integer polynomials of degree n all of whose roots are distinct and of modulus at most 1.

Original entry on oeis.org

1, 3, 6, 10, 16, 24, 38, 58, 86, 122, 172, 236, 328, 448, 606, 802, 1060, 1380, 1806, 2338, 3018, 3846, 4900, 6180, 7816, 9808, 12294, 15274, 18982, 23418, 28938, 35542, 43638, 53226, 64942, 78786, 95686, 115642, 139754, 168022, 202086, 241946
Offset: 0

Views

Author

Christopher J. Smyth, Jan 07 2017

Keywords

Comments

Such polynomials are a product of distinct cyclotomic polynomials, possibly multiplied by z. This follows from a classical result of Kronecker -- see Links.

Examples

			a(2)=6 because the six polynomials z^2+z+1, z^2+1, z^2-z+1, z^2-z, z^2+z and z^2-1 are the only ones of the required type.
		

Crossrefs

Cf. A280611 (variant where all roots must have modulus exactly 1);
Cf. A120963 (variant where multiple roots are allowed).

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + x) Product[(1 + x^EulerPhi@ i), {i, n E^2}], {x, 0, n}], {n, 0, 120}] (* Michael De Vlieger, Jan 10 2017 *)

Formula

a(0) = 1 and a(n) = b(n)+b(n-1) for n >= 1, where b(n) = A280611(n).
G.f.: (1+x)*Product_{i>=1} (1+x^phi(i)) = (1+x)*Product_{j>=1} (1+x^j)^A014197(j), where phi(i)=A000010(i) is Euler's totient function.
It is also the Euler transform of A280712 except with its first two terms (2,1) replaced by (3,0).
a(n) ~ exp(sqrt(105*zeta(3)*n/2)/Pi) * (105*zeta(3)/2)^(1/4) / (2*Pi*n^(3/4)). - Vaclav Kotesovec, Sep 02 2021

A305353 Expansion of Product_{k>=1} (1 - x^phi(k)), where phi is Euler's totient function.

Original entry on oeis.org

1, -2, -2, 6, -4, 2, 6, -14, 8, -2, 4, -6, -16, 38, -22, 6, 2, -10, 2, 6, 60, -126, 28, 70, -38, 6, -38, 70, -54, 38, 18, -74, -70, 214, 106, -426, 186, 54, -26, -2, -92, 186, -218, 250, -66, -118, -104, 326, 466, -1258, 500, 258, -254, 250, -368, 486, -342, 198
Offset: 0

Views

Author

Seiichi Manyama, May 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 58;
    S[m_] := S[m] = CoefficientList[Product[1 - x^EulerPhi[k],
         {k, 1, m*terms}] + O[x]^terms, x];
    S[m = 1];
    S[m++];
    While[S[m] != S[m - 1], m++];
    S[m] (* Jean-François Alcover, May 12 2022 *)

Formula

Product_{k>=1} (1 - x^k)^A014197(k).

A347524 E.g.f.: exp(Sum_{k>=1} A014197(k)*x^k).

Original entry on oeis.org

1, 2, 10, 44, 364, 2552, 28504, 267920, 3762448, 44426528, 733803424, 10281376448, 197599119040, 3231560909696, 69960323019136, 1295278340380928, 31334430312038656, 650842176105505280, 17337350481203210752, 397746862137852603392, 11579274068100022660096
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 05 2021

Keywords

Crossrefs

Formula

E.g.f.: exp(Sum_{k>=1} x^A000010(k)).
log(a(n)/n!) ~ 3*sqrt(70*zeta(3)*n)/Pi^2.
Showing 1-6 of 6 results.