A280641 Numbers k such that k^3 has an odd number of digits and the middle digit is 1.
1, 6, 8, 23, 44, 45, 102, 106, 110, 114, 117, 121, 137, 148, 152, 153, 162, 168, 176, 185, 189, 194, 206, 210, 478, 488, 512, 533, 553, 560, 574, 580, 626, 639, 655, 662, 669, 671, 676, 682, 683, 684, 685, 693, 704, 710, 730, 731, 737, 742, 758, 761, 767, 771
Offset: 1
Examples
1^3 = (1), 114^3 = 148(1)544, 560^3 = 1756(1)6000
Links
- Lars Blomberg, Table of n, a(n) for n = 1..10000
- Jeremy Gardiner, Middle digit in cube numbers, Seqfan Mailing list, Dec 12 2016.
Crossrefs
Programs
-
Mathematica
a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]] + 1)/2]; Select[Range[0, 771], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==1 &] (* Indranil Ghosh, Mar 06 2017 *)
-
PARI
isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 1); for(k=0, 771, if(isok(k)==1, print1(k, ", "))); \\ Indranil Ghosh, Mar 06 2017
-
Python
i=0 j=1 while i<=771: n=str(i**3) l=len(n) if l%2 and n[(l-1)//2]=="1": print(str(i), end=', ') j+=1 i+=1 # Indranil Ghosh, Mar 06 2017
Comments