cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280650 Numbers k such that k^3 has an odd number of digits in base 2 and the middle digit is 0.

Original entry on oeis.org

0, 3, 4, 12, 16, 17, 29, 30, 31, 43, 44, 46, 48, 50, 64, 65, 68, 78, 79, 80, 102, 104, 105, 107, 108, 109, 112, 114, 116, 117, 118, 121, 127, 163, 167, 169, 170, 172, 173, 174, 175, 176, 179, 183, 186, 187, 188, 189, 191, 192, 193, 195, 196, 198, 200, 202, 203
Offset: 1

Views

Author

Lars Blomberg, Jan 12 2017

Keywords

Examples

			3^3 = 11(0)11_2, 43^3 = 10011011(0)10010011_2, 117^3 = 1100001110(0)0001001101_2.
		

Crossrefs

Cf. A280651.
See A279430-A279431 for a k^2 version.
See A280640-A280649 for a base-10 version.
See A279420-A279429 for a k^2, base-10 version.

Programs

  • Mathematica
    a[n_]:=Part[IntegerDigits[n, 2], (Length[IntegerDigits[n,2]] + 1)/2];
    Select[Range[0, 203], OddQ[Length[IntegerDigits[#^3, 2]]] && a[#^3]==0 &] (* Indranil Ghosh, Mar 06 2017 *)
    md0Q[n_]:=Module[{idn2=IntegerDigits[n^3,2],len},len=Length[idn2];OddQ[ len] &&idn2[[(len+1)/2]]==0]; Select[Range[0,250],md0Q] (* Harvey P. Dale, Dec 15 2019 *)
  • PARI
    isok(k) = my(d=digits(k^3, 2)); (#d%2 == 1) && (d[#d\2 +1] == 0);
    for(k=0, 203, if(k==0 || isok(k)==1, print1(k,", "))); \\ Indranil Ghosh, Mar 06 2017
    
  • Python
    i=0
    j=1
    while i<=203:
        n=str(bin(i**3)[2:])
        l=len(n)
        if l%2==1 and n[(l-1)/2]=="0":
            print (str(i))+",",
            j+=1
        i+=1 # Indranil Ghosh, Mar 06 2017