A280685 a(n) = sum of the divisors of the product of the divisors of n.
1, 3, 4, 15, 6, 91, 8, 127, 40, 217, 12, 5080, 14, 399, 403, 2047, 18, 16395, 20, 19812, 741, 931, 24, 991111, 156, 1281, 1093, 50800, 30, 2929531, 32, 65535, 1729, 2149, 1767, 30203052, 38, 2667, 2379, 6397171, 42, 10506551, 44, 185928, 170508, 3871, 48
Offset: 1
Keywords
Examples
For n = 4; a(n) = sigma (1*2*4) = sigma(8) = 15.
Programs
-
Magma
[&+[d: d in Divisors(&*[d: d in Divisors(n)])]: n in [1..100]];
-
Python
from math import isqrt from sympy import divisor_sigma def A280685(n): return divisor_sigma((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022
Formula
a(p) = p + 1 for p = primes (A000040).
a(2^n) = 2*A007955(2^n) - 1. [corrected by Jason Yuen, Mar 08 2025]