cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A347377 Möbius transform of A280692, A003961(n) - A250469(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 0, -6, 0, 12, 0, -6, 0, 30, 0, 24, 0, 12, 0, -24, 0, 48, 0, -24, 60, 24, 0, 24, 0, 114, -20, -42, 0, 84, 0, -42, -10, 60, 0, 48, 0, 12, 60, -48, 0, 168, 0, 6, -30, 24, 0, 132, 0, 108, -30, -78, 0, 96, 0, -72, 120, 390, 0, 44, 0, 12, -30, 36, 0, 288, 0, -96, 60, 24, 0, 58, 0, 228, 360, -114
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A280692(d).
a(n) = A003972(n) - A347376(n).

A250469 a(1) = 1; and for n > 1, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1, where A055396(n) is the index of smallest prime dividing n.

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 21, 25, 27, 13, 33, 17, 39, 35, 45, 19, 51, 23, 57, 55, 63, 29, 69, 49, 75, 65, 81, 31, 87, 37, 93, 85, 99, 77, 105, 41, 111, 95, 117, 43, 123, 47, 129, 115, 135, 53, 141, 121, 147, 125, 153, 59, 159, 91, 165, 145, 171, 61, 177, 67, 183, 155, 189, 119, 195, 71, 201, 175, 207, 73, 213, 79, 219, 185, 225, 143, 231, 83, 237, 205, 243, 89, 249, 133, 255
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

Permutation of odd numbers.
For n >= 2, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1. In other words, a(n) tells which number is located immediately below n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n.
A250471(n) = (a(n)+1)/2 is a permutation of natural numbers.
Coincides with A003961 in all terms which are primes. - M. F. Hasler, Sep 17 2016. Note: primes are a proper subset of A280693 which gives all n such that a(n) = A003961(n). - Antti Karttunen, Mar 08 2017

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]]; Array[a, 100] (* Jean-François Alcover, Mar 08 2016 *)
    g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@#], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017, Version 10 *)

Formula

a(1) = 1, a(n) = A083221(A055396(n)+1, A078898(n)).
a(n) = A249817(A003961(A249818(n))).
Other identities. For all n >= 1:
A250470(a(n)) = A268674(a(n)) = n. [A250470 and A268674 provide left inverses for this function.]
a(2n) = A016945(n-1). [Maps even numbers to the numbers of form 6n+3, in monotone order.]
a(A016945(n-1)) = A084967(n). [Which themselves are mapped to the terms of A084967, etc. Cf. the Example section of A083140.]
a(A000040(n)) = A000040(n+1). [Each prime is mapped to the next prime.]
For all n >= 2, A055396(a(n)) = A055396(n)+1. [A more general rule.]
A046523(a(n)) = A283465(n). - Antti Karttunen, Mar 08 2017

A280702 a(n) = gcd(A003961(n), A250469(n)).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 3, 25, 3, 13, 3, 17, 3, 35, 9, 19, 3, 23, 3, 55, 3, 29, 3, 49, 3, 5, 9, 31, 3, 37, 3, 5, 3, 77, 15, 41, 3, 5, 9, 43, 3, 47, 3, 5, 3, 53, 3, 121, 147, 5, 153, 59, 3, 91, 33, 5, 3, 61, 3, 67, 3, 5, 27, 119, 195, 71, 3, 5, 3, 73, 3, 79, 3, 5, 9, 143, 3, 83, 3, 5, 3, 89, 3, 133, 3, 5, 9, 97, 3, 187, 3, 5, 3, 161
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

For n > 1, a(n) > 1 because A020639(A003961(n)) = A020639(A250469(n)) = A003961(A020639(n)).

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[ GCD[ Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1], f@ First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017 *)
  • Scheme
    (define (A280702 n) (gcd (A003961 n) (A250469 n)))

Formula

a(n) = gcd(A003961(n), A250469(n)).

A280693 Numbers n such that A003961(n) = A250469(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 50, 52, 53, 55, 59, 61, 65, 66, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 186, 187, 191, 193, 197, 199, 203
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

Positions of zeros in A280692. Conjectured to be also the positions of ones in A280703.
For most terms k of this sequence A003961(k) is also included as a term. Exceptions are: 50, 52, 66, 186, 435, 1245, 1445, 2068, 2085, 11605, ... that seems to be a subsequence of all those terms that have more than two prime factors: 50, 52, 66, 186, 435, 1245, 1445, 2068, 2085, 8695, 11605, ...
Note how 8695 = 5*37*47 and A003961(8695) = 7*41*53 = 15211 = A003961(8695) = A250469(8695) (for no apparent reason?).

Crossrefs

Fixed points of permutations A266645 & A266646.
Cf. A000040, A001248, A006094, A251728 (subsequences).
Cf. also arrays A083221 and A246278.

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; With[{nn = 204}, Function[s, Function[t, Select[Range@ nn, f@ # == t[[#]] &]]@ MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ nn]]@ PositionIndex@ Array[g, 10^4]] (* Michael De Vlieger, Mar 08 2017, Version 10 *)

A346476 a(n) = 2*n - A250469(n).

Original entry on oeis.org

1, 1, 1, -1, 3, -3, 3, -5, -7, -7, 9, -9, 9, -11, -5, -13, 15, -15, 15, -17, -13, -19, 17, -21, 1, -23, -11, -25, 27, -27, 25, -29, -19, -31, -7, -33, 33, -35, -17, -37, 39, -39, 39, -41, -25, -43, 41, -45, -23, -47, -23, -49, 47, -51, 19, -53, -31, -55, 57, -57, 55, -59, -29, -61, 11, -63, 63, -65, -37
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A280692(n) - A252748(n).
a(n) = A033879(n) - A346473(n).
a(n) = A346478(n) - A346477(n).
a(n) = n - A347378(n).
a(A000040(n)) = -A252748(A000040(n)) = -A346477(A000040(n)) = A062234(n).

A346473 a(n) = A250469(n) - sigma(n).

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 3, 6, 12, 9, 1, 5, 3, 15, 11, 14, 1, 12, 3, 15, 23, 27, 5, 9, 18, 33, 25, 25, 1, 15, 5, 30, 37, 45, 29, 14, 3, 51, 39, 27, 1, 27, 3, 45, 37, 63, 5, 17, 64, 54, 53, 55, 5, 39, 19, 45, 65, 81, 1, 9, 5, 87, 51, 62, 35, 51, 3, 75, 79, 63, 1, 18, 5, 105, 61, 85, 47, 63, 3, 51, 84, 117, 5, 25, 25, 123, 95
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2021

Keywords

Comments

The first negative term is a(120) = -3.

Crossrefs

Programs

  • Mathematica
    Block[{g}, g[n_] := If[n == 1, 0, PrimePi@FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] - DivisorSigma[1, First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4]] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A346473(n) = A250469(n)-sigma(n);

Formula

a(n) = A250469(n) - A000203(n).
a(n) = A286385(n) - A280692(n).
a(A001359(n)) = 1 for all n >= 1.

A347378 a(n) = A250469(n) - n.

Original entry on oeis.org

0, 1, 2, 5, 2, 9, 4, 13, 16, 17, 2, 21, 4, 25, 20, 29, 2, 33, 4, 37, 34, 41, 6, 45, 24, 49, 38, 53, 2, 57, 6, 61, 52, 65, 42, 69, 4, 73, 56, 77, 2, 81, 4, 85, 70, 89, 6, 93, 72, 97, 74, 101, 6, 105, 36, 109, 88, 113, 2, 117, 6, 121, 92, 125, 54, 129, 4, 133, 106, 137, 2, 141, 6, 145, 110, 149, 66, 153, 4, 157, 124
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A250469(n) - n.
a(n) = n - A346476(n).
a(n) = A336853(n) - A280692(n).
For all n >= 1, a(A000040(n)) = A001223(n).
Showing 1-7 of 7 results.