cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280706 a(n) = Sum_{k=1..n} q(k+1-q(k)), where q(k) = A005185(k); partial sums of A283467.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 26, 30, 35, 39, 44, 49, 54, 60, 66, 72, 78, 86, 92, 100, 108, 116, 124, 132, 142, 150, 159, 169, 179, 189, 200, 211, 221, 232, 243, 254, 266, 278, 290, 302, 314, 330, 340, 354, 368, 380, 394, 410, 424, 438, 454, 468, 484, 500, 516, 532, 552, 568, 585, 606, 622, 639, 658, 678, 698, 719, 740
Offset: 1

Views

Author

Antti Karttunen after Altug Alkan's A284173, Mar 22 2017

Keywords

Crossrefs

Partial sums of A283467.

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Accumulate@ Table[a[n + 1 - a[n]], {n, 72}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    a(n) = if(n<3, 1, a(n - a(n - 1)) + a(n - a(n - 2)));
    for(n=1, 72, print1(sum(k=1, n, a(k + 1 - a(k))),", ")) \\ Indranil Ghosh, Mar 22 2017
  • Scheme
    ;; Code for A005185 given under that entry.
    ;; With memoization-macro definec:
    (definec (A280706 n) (if (= 1 n) 1 (+ (A280706 (- n 1)) (A283467 n))))
    ;; As an explicit sum (slower):
    (define (A280706 n) (add (lambda (k) (A005185 (- (+ k 1) (A005185 k)))) 1 n))
    ;; Implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    

Formula

a(1) = 1, for > 1, a(n) = A283467(n) + a(n-1).
A284173(n) = a(n) modulo n.