A280712 Inverse Euler transform of A280611.
2, 1, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 4, 0, 3, 0, 2, 0, 4, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 7, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 9, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 6, 0, 0, 0, 4, 0, 2, 0, 1, 0
Offset: 1
Examples
a(4) = #{m:phi(m) = 4} - #{m:phi(m) = 2} = #{5,8,10,12} - #{2,4,6} = 4-3 = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20160
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
Formula
Euler transform of sequence = Product_{k>=1} (1-x^k)^(-a(k)) is the g.f. of A280611.
Extensions
More terms from Antti Karttunen, Nov 09 2018
Comments