cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280721 a(n) is the n-th b > 1 such that p = prime(n) satisfies b^(p-1) == 1 (mod p^2).

Original entry on oeis.org

5, 10, 24, 31, 81, 89, 134, 127, 255, 267, 430, 476, 744, 424, 629, 895, 1105, 1079, 1301, 1331, 1440, 2092, 1451, 2466, 2488, 2140, 3326, 2638, 2815, 3517, 4345, 4138, 4505, 4659, 5571, 6021, 5383, 5460, 6071, 6844, 8434, 7076, 8961, 10215, 7522, 9817, 11499
Offset: 1

Views

Author

Felix Fröhlich, Jan 07 2017

Keywords

Comments

Main diagonal of A244249.
There are exactly p-1 residue classes b mod p^2 for which b^(p-1) == 1 (mod p^2), of which p-2 will be greater than 1. p-2 > n for n > 3, so a(n) < prime(n)^2 for n > 2 (case n = 3 is fortuitous). - Charles R Greathouse IV, Jun 23 2021

Examples

			For n=2, prime(2)=3, 10^1 == 1 (mod 9), 10^2 == 1 (mod 9), a(2) = 10. - _N. J. A. Sloane_, Jan 14 2017
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,S,nS,r;
       p:= ithprime(n);
       S:= sort(map(t -> rhs(op(t)), [msolve(b^(p-1)=1, p^2)]));
       nS:= nops(S);
       r:= (n mod nS)+1;
       S[r] + (n+1-r)/nS*p^2;
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 09 2017
  • Mathematica
    Table[Function[p, Select[Range[p^2 + 1], PowerMod[#, p - 1, p^2] == 1 &][[n + 1]]]@ Prime@ n, {n, 47}] (* Michael De Vlieger, Jan 09 2017 *)
  • PARI
    base(p, n) = my(b=2, i=0); while(1, if(Mod(b, p^2)^(p-1)==1, i++); if(i==n, return(b)); b++)
    a(n) = base(prime(n), n)

Formula

a(n) < prime(n)^2 for n > 2, see comments. - Charles R Greathouse IV, Jun 23 2021