A280721 a(n) is the n-th b > 1 such that p = prime(n) satisfies b^(p-1) == 1 (mod p^2).
5, 10, 24, 31, 81, 89, 134, 127, 255, 267, 430, 476, 744, 424, 629, 895, 1105, 1079, 1301, 1331, 1440, 2092, 1451, 2466, 2488, 2140, 3326, 2638, 2815, 3517, 4345, 4138, 4505, 4659, 5571, 6021, 5383, 5460, 6071, 6844, 8434, 7076, 8961, 10215, 7522, 9817, 11499
Offset: 1
Keywords
Examples
For n=2, prime(2)=3, 10^1 == 1 (mod 9), 10^2 == 1 (mod 9), a(2) = 10. - _N. J. A. Sloane_, Jan 14 2017
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) local p,S,nS,r; p:= ithprime(n); S:= sort(map(t -> rhs(op(t)), [msolve(b^(p-1)=1, p^2)])); nS:= nops(S); r:= (n mod nS)+1; S[r] + (n+1-r)/nS*p^2; end proc: map(f, [$1..100]); # Robert Israel, Jan 09 2017
-
Mathematica
Table[Function[p, Select[Range[p^2 + 1], PowerMod[#, p - 1, p^2] == 1 &][[n + 1]]]@ Prime@ n, {n, 47}] (* Michael De Vlieger, Jan 09 2017 *)
-
PARI
base(p, n) = my(b=2, i=0); while(1, if(Mod(b, p^2)^(p-1)==1, i++); if(i==n, return(b)); b++) a(n) = base(prime(n), n)
Formula
a(n) < prime(n)^2 for n > 2, see comments. - Charles R Greathouse IV, Jun 23 2021
Comments