A280731 Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in base 9 (the numbers are written in base 10).
1, 2, 3, 9, 10, 18, 19, 81, 90, 162, 171, 729, 810, 1458, 1539, 6561, 7290, 13122, 13851, 59049, 65610, 118098, 124659, 531441, 590490, 1062882, 1121931, 4782969, 5314410, 9565938, 10097379, 43046721, 47829690, 86093442, 90876411, 387420489, 430467210
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,9).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,9},{1,2,3,9,10,18,19},50] (* Harvey P. Dale, Feb 28 2022 *)
-
PARI
Vec(x*(1 + 2*x + 3*x^2 + 9*x^3 + x^4 - 8*x^6) / ((1 - 3*x^2)*(1 + 3*x^2)) + O(x^50)) \\ Colin Barker, Jan 10 2017
Formula
For k>7, a(k+4) = 9*a(k).
G.f.: x*(1 + 2*x + 3*x^2 + 9*x^3 + x^4 - 8*x^6) / ((1 - 3*x^2)*(1 + 3*x^2)). - Colin Barker, Jan 10 2017
Comments