A280787 Triangle read by rows: number of topologically distinct sets of n circles with one pair intersecting, by number of factors.
1, 3, 1, 10, 4, 1, 30, 15, 4, 1, 91, 50, 16, 4, 1, 268, 162, 55, 16, 4, 1, 790, 506, 185, 56, 16, 4, 1, 2308, 1558, 594, 190, 56, 16, 4, 1, 6737, 4727, 1878, 617, 191, 56, 16, 4, 1, 19609, 14227, 5825, 1970, 622, 191, 56, 16, 4, 1
Offset: 2
Examples
Triangle begins: 1; 3, 1; 10, 4, 1; 30, 15, 4, 1; 91, 50, 16, 4, 1; 268, 162, 55, 16, 4, 1; 790, 506, 185, 56, 16, 4, 1; 2308, 1558, 594, 190, 56, 16, 4, 1; ...
Links
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
Crossrefs
Row sums give A280786.
Programs
-
Mathematica
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)]; A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2]; A280788[n_] := If[n == 0, 1, Sum[a81[np+1]*A027852[n-np+2], {np, 0, n}]]; t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k]; A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]]; A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct]; Table[A280787[n, f], {n, 2, 11}, {f, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)