cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280787 Triangle read by rows: number of topologically distinct sets of n circles with one pair intersecting, by number of factors.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 30, 15, 4, 1, 91, 50, 16, 4, 1, 268, 162, 55, 16, 4, 1, 790, 506, 185, 56, 16, 4, 1, 2308, 1558, 594, 190, 56, 16, 4, 1, 6737, 4727, 1878, 617, 191, 56, 16, 4, 1, 19609, 14227, 5825, 1970, 622, 191, 56, 16, 4, 1
Offset: 2

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Examples

			Triangle begins:
     1;
     3,    1;
    10,    4,   1;
    30,   15,   4,   1;
    91,   50,  16,   4,  1;
   268,  162,  55,  16,  4,  1;
   790,  506, 185,  56, 16,  4, 1;
  2308, 1558, 594, 190, 56, 16, 4, 1;
...
		

Crossrefs

Row sums give A280786.

Programs

  • Mathematica
    a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
    A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
    A280788[n_] := If[n == 0, 1, Sum[a81[np+1]*A027852[n-np+2], {np, 0, n}]];
    t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
    b[1, 1, 1] = 1;
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
    A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
    A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
    Table[A280787[n, f], {n, 2, 11}, {f, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)