A280795 E.g.f. A(x) = F(x)^2, where F(F(x)) = sin(x).
2, -4, -4, -64, -1392, -36048, -68288, 217764736, 45152039424, 6761531610496, 479656304761728, -181164506307765760, -94510602811595547648, -9099359091145965684736, 15760449987522859047213056, 8420566548360384773538111488, -5361092182457081839427169370112, -9833526816807364784720991628738560, 595009928118250648162581567581609984
Offset: 1
Keywords
Examples
E.g.f.: A(x) = 2*x^2/2! - 4*x^4/4! - 4*x^6/6! - 64*x^8/8! - 1392*x^10/10! - 36048*x^12/12! - 68288*x^14/14! + 217764736*x^16/16! + 45152039424*x^18/18! + 6761531610496*x^20/20! +... where A(x) = F(x)^2 such that F(F(x)) = sin(x) and F(x) begins: F(x) = x - 1/2*x^3/3! - 3/4*x^5/5! - 53/8*x^7/7! - 1863/16*x^9/9! - 92713/32*x^11/11! - 3710155/64*x^13/13! + 594673187/128*x^15/15! + 329366540401/256*x^17/17! + 104491760828591/512*x^19/19! + 19610322215706989/1024*x^21/21! +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..100
Programs
-
PARI
{a(n)=local(A, B, F); F=sin(x+O(x^(2*n+1))); A=F; for(i=0, 2*n-1, B=serreverse(A); A=(A+subst(B, x, F))/2); if(n<1, 0, (2*n)!*polcoeff(A^2, 2*n, x))} for(n=1, 30, print1(a(n), ", "))
Comments