cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280801 Least k > 0 such that (2*n)^k is in A002202, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 15, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 7, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 8, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 1, 1, 4, 1, 1, 1, 17, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 5, 2, 2, 1, 1, 4, 1, 3
Offset: 1

Views

Author

Altug Alkan, Jan 08 2017

Keywords

Comments

Least k such that A280801(k) = n, or 0 if no such k exists are 1, 7, 19, 17, 31, 223, 61, 79, 151, 383, 181, 347, 523, 1109, 43, 607, 101, 733, 1033, 409, 1783, 1123, 199, 1471, 1301, 5113, 1801, 2311, 3617, 1699, 1543, 7489, 2663, 4583, 7829, 2749, 4177, 5179, 2389, 13291, 20389, ...
What is the asymptotic behavior of this sequence?
Conjecture: a(n) > 0 for all values of n. - Altug Alkan, Jan 11 2017

Examples

			a(43) = 15 because (43*2)^k is not in A002202 for 0 < k < 15 and 86^15 = 104106241746467411129608011776 is in A002202.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 1); while (!istotient((2*n)^k), k++); k; }

Formula

a(n) = 1 for n in A002180; a(n) <> 1 for n in A079695. - Michel Marcus, Jan 08 2017