A176670 Composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.
1111, 1255, 12955, 17482, 25105, 28174, 51295, 81229, 91365, 100255, 101299, 105295, 107329, 110191, 110317, 117067, 124483, 127417, 129595, 132565, 137281, 145273, 146137, 149782, 163797, 171735, 174082, 174298, 174793, 174982, 193117, 208174, 210181, 217894
Offset: 1
Examples
n = 25105 = 5*5021; both n and the factorization of n have digits 1, 2, 5, 5; sorted and excluding zeros. n = 110191 = 101*1091; both n and the factorization of n have digits 1, 1, 1, 1, 9; sorted and excluding zeros. n = 171735 = 3*5*107*107; both n and the factorization of n have digits 1, 1, 3, 5, 7, 7; sorted and excluding zeros.
Links
- Ely Golden, Table of n, a(n) for n = 1..10000 [Terms 1 through 2113 were computed by Paul Weisenhorn; and terms 2114 to 10000 by Ely Golden, Nov 30 2016]
- Ely Golden, Smith number sequence generator optimized for A176670
- Ely Golden, Proof that A280827(n)>=0 for all n>1
- Eric W. Weisstein, Smith Number
Crossrefs
Cf. A006753.
Programs
-
Mathematica
fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, s = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ s[[1]] == 0, s = Drop[s, 1]]; n > 1 && ! PrimeQ@ n && s == id]; Select[ Range@ 200000, fQ] Select[Range[2*10^5], Function[n, And[CompositeQ@ n, Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)
-
Python
from sympy import factorint, flatten def sd(n): return sorted(str(n).replace('0', '')) def ok(n): f = factorint(n) return sum(f[p] for p in f) > 1 and sd(n) == sorted(flatten(sd(p)*f[p] for p in f)) print(list(filter(ok, range(220000)))) # Michael S. Branicky, Apr 22 2021
Comments