A280864 Lexicographically earliest infinite sequence of distinct positive terms such that, for any prime p, any run of consecutive multiples of p has length exactly 2.
1, 2, 4, 3, 6, 8, 5, 10, 12, 9, 7, 14, 16, 11, 22, 18, 15, 20, 24, 21, 28, 26, 13, 17, 34, 30, 45, 19, 38, 32, 23, 46, 36, 27, 25, 35, 42, 48, 29, 58, 40, 55, 33, 39, 52, 44, 77, 49, 31, 62, 50, 65, 78, 54, 37, 74, 56, 63, 51, 68, 60, 75, 41, 82, 64, 43, 86
Offset: 1
Examples
The first terms, alongside their required and forbidden prime factors are: n a(n) Required Forbidden -- ---- -------- --------- 1 1 none none 2 2 none none 3 4 2 none 4 3 none 2 5 6 3 none 6 8 2 3 7 5 none 2 8 10 5 none 9 12 2 5 10 9 3 2 11 7 none 3 12 14 7 none 13 16 2 7 14 11 none 2 15 22 11 none 16 18 2 11 17 15 3 2 18 20 5 3 19 24 2 5 20 21 3 2 21 28 7 3 22 26 2 7 23 13 13 2 24 17 none 13 25 34 17 none 26 30 2 17 27 45 3, 5 2 28 19 none 3, 5 29 38 19 none 30 32 2 19 31 23 none 2 32 46 23 none 33 36 2 23 34 27 3 2 35 25 none 3 36 35 5 none 37 42 7 5 38 48 2, 3 7 39 29 none 2, 3 40 58 29 none 41 40 2 29 42 55 5 2
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..100000 (First 10000 terms from Rémy Sigrist)
- Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020
- Rémy Sigrist, PARI program for A280864
- N. J. A. Sloane, Properties of A280864 [Revised, Apr 25 2017]
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000000, computed using Sigrist's PARI program.
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms until the first term > N A[1]:= 1: A[2]:= 2: G:= {}: Avail:= [$3..N]: found:= true: lastn:= 2: for n from 3 while found and nops(Avail)>0 do found:= false; H:= G; G:= numtheory:-factorset(A[n-1]); r:= convert(G minus H,`*`); s:= convert(G intersect H, `*`); for j from 1 to nops(Avail) do if Avail[j] mod r = 0 and igcd(Avail[j],s) = 1 then found:= true; A[n]:= Avail[j]; Avail:= subsop(j=NULL,Avail); lastn:= n; break fi od; od: seq(A[i],i=1..lastn); # Robert Israel, Mar 22 2017
-
Mathematica
terms = 100; rad[n_] := Times @@ FactorInteger[n][[All, 1]]; A280864 = Reap[present = 0; p = 1; pp = 1; Do[forbidden = GCD[p, pp]; mandatory = p/forbidden; a = mandatory; While[BitGet[present, a] > 0 || GCD[forbidden, a] > 1, a += mandatory]; Sow[a]; present += 2^a; pp = p; p = rad[a], terms]][[2, 1]] (* Jean-François Alcover, Nov 23 2017, translated from Rémy Sigrist's PARI program *)
Extensions
Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019
Comments