cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280893 a(n) is the maximum prime factor of the concatenation of all the previous terms, with a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 3, 41, 43, 1063, 5479, 111031, 790000148543, 790000148543, 326139075156576200419624217119, 326139075156576200419624217119, 326139075156576200419624217119, 246787955464079218902570922322710067417716295997334514692275780099917
Offset: 1

Views

Author

Paolo P. Lava, Jan 10 2017

Keywords

Examples

			The maximum prime factor of concat(1,2) = 12 is 3, so a(3) = 3;
The maximum prime factor of concat(1,2,3) = 123 is 41, so a(4) = 41; etc.
		

Crossrefs

Cf. A280894.

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,b,c,k,n; print(1); print(2); a:=12;for n from 3 to q do b:=ifactors(a)[2]; c:=0; for k from 1 to nops(b) do if b[k][1]>c then c:=b[k][1]; fi; od; a:=a*10^(ilog10(c)+1)+c; print(c); od; end: P(10^2);
  • Mathematica
    a = {1, 2}; Do[AppendTo[a, FactorInteger[FromDigits@ Flatten@ Map[IntegerDigits, a]][[-1, 1]]], {10}]; a (* Michael De Vlieger, Jan 10 2017 *)

Extensions

a(12)-a(13) from Jon E. Schoenfield, Jan 10 2017
a(14)-a(15) from Hans Havermann, Jan 12 2017