cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280921 Degree of SO(n,C), the special orthogonal group, as an algebraic variety.

Original entry on oeis.org

2, 8, 40, 384, 4768, 111616, 3433600, 196968448, 14994641408, 2112561610752, 397713919469568, 137785594909556736, 64120367727755108352, 54666180849611078369280, 62864933930402036994048000, 131959858152100309567348408320, 374913851106401853810511580364800, 1938349609799484523235647407112847360, 13603397258157549964912652571654029312000
Offset: 2

Views

Author

Taylor Brysiewicz, Jan 10 2017

Keywords

Examples

			For n = 4 we have a(4) = 2^3*det({6,1},{1,1}) = 2^3*(6-1) = 40.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(n-1) Det[Table[Binomial[2n-2i-2j, n-2i], {i, n/2}, {j, n/2}]];
    Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    a(n) = 2^(n-1)*matdet(matrix(n\2,n\2,i,j,binomial(2*n-2*i-2*j,n-2*i))); \\ Michel Marcus, Jan 14 2017

Formula

a(n) = 2^(n-1)*det(binomial(2n-2i-2j, n-2i))_{i,j=1..floor(n/2)}.
a(2*n+1) = A280922(n) * 2^(2*n).
Let M_n be the n X n matrix M_n(i, j) = binomial(2*i+2*j-2, 2*i-1) = A103328(i+j-1, i-1); then a(2*n+1) = 2^(2*n)*det(M_n).
Let M_n be the n X n matrix M_n(i,j) = binomial(2*i+2*j-4, 2*i-2) = A086645(i+j-2, i-1); then a(2*n) = 2^(2*n-1)*det(M_n).

A280922 Degree of Sp(n,C), the symplectic group, as an algebraic variety.

Original entry on oeis.org

2, 24, 1744, 769408, 2063048448, 33639061257216, 3336558889746769920, 2013547640260319665029120, 7394216956327379315321530941440, 165246096715086213509958939917335920640, 22475501333841331145301219459764999435840913408
Offset: 1

Views

Author

Taylor Brysiewicz, Jan 10 2017

Keywords

Examples

			For n=2 we have a(2)=det({2,4},{4,20})=24.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Det[Table[Binomial[2i+2j-2, 2i-1], {i, 1, n}, {j, 1, n}]]
    Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    a(n) = matdet(matrix(n,n,i,j,binomial(2*i+2*j-2, 2*i-1))); \\ Michel Marcus, Jan 14 2017

Formula

a(n) = det(binomial(2*i+2*j-2,2*i-1))_{i,j=1}^n.
a(n)*2^(2*n) = A280921(2*n+1).
a(n)*2^(2*n+1) = A280923(2*n+1).
Let M_n be the n X n matrix M_n(i,j) = binomial(2*i+2*j-2,2*i-1) = A103328(i+j-1,i-1); then a(n) = det(M_n).
Showing 1-2 of 2 results.