A280928 Composite numbers having the same digits as their prime factors (with multiplicity), including zero digits.
1255, 12955, 17482, 25105, 100255, 101299, 105295, 107329, 117067, 124483, 127417, 129595, 132565, 145273, 146137, 149782, 163797, 174082, 174298, 174793, 174982, 250105, 256315, 263155, 295105, 297463, 307183, 325615, 371893, 536539, 687919, 1002955, 1004251, 1012099, 1025095, 1029955
Offset: 1
Examples
100255 is a member of this sequence as 100255 = 5*20051, which is exactly the same set of digits as 100255.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..3643 from Ely Golden)
Crossrefs
Programs
-
Python
from sympy import factorint def ok(n): f = factorint(n) return sum(f.values()) > 1 and sorted(str(n)) == sorted("".join(str(p)*f[p] for p in f)) print([k for k in range(700000) if ok(k)]) # Michael S. Branicky, Apr 20 2025
-
SageMath
def digits(x, n): if((x<=0)|(n<2)): return [] li=[] while(x>0): d=divmod(x, n) li.append(d[1]) x=d[0] li.sort() return li; def factorDigits(x, n): if((x<=0)|(n<2)): return [] li=[] f=list(factor(x)) #ensures inequality of digits(x, n) and factorDigits(x, n) if x is prime if((len(f)==1)&(f[0][1]==1)): return []; for c in range(len(f)): for d in range(f[c][1]): ld=digits(f[c][0], n) li+=ld li.sort() return li; #this variable affects the radix radix=10 c=2 index=1 while(index<=100): if(digits(c,radix)==factorDigits(c,radix)): print(str(index)+" "+str(c)) index+=1 c+=1 print("complete")
Comments