A280941 Least integer k such that prime(k+1) - prime(k) = 2 and prime(k+2) - prime(k+1) = 2n, or 0 if no such k exists.
2, 3, 10, 0, 33, 45, 0, 294, 98, 0, 296, 262, 0, 428, 984, 0, 1456, 3086, 0, 2343, 1878, 0, 14938, 8422, 0, 2809, 4259, 0, 7809, 13819, 0, 51036, 45506, 0, 15782, 30764, 0, 57764, 24553, 0, 23282, 51942, 0, 44902, 34214, 0, 1242641, 95929, 0, 66761
Offset: 1
Keywords
Examples
a(3) = 10 because prime(11) - prime(10) = 31 - 29 = 2 and prime(12) - prime(11) = 37 - 31 = 6 = 2*3. a(11) = 296 because prime(297) - prime(296) = 1951 - 1949 = 2 and prime(298) - prime(297) = 1973 - 1951 = 22 = 2*11.
Programs
-
Maple
nn:=50:m:=10^5: for n from 1 to 50 do: ii:=0: for k from 1 to m while(ii=0) do: p1:=ithprime(k):p2:=ithprime(k+1):p3:=ithprime(k+2): if p2-p1 = 2 and p3-p2 = 2*n then ii:=1:printf(`%d %d \n`,n,k): else fi: od: if ii=0 then printf(`%d %d \n`,n,0): else fi: od:
-
Mathematica
Table[If[And[n > 1, Mod[n, 3] == 1], 0, k = 1; While[Nand[# - Prime@ k == 2, Prime[k + 2] - # == 2 n] &@ Prime[k + 1], k++]; k], {n, 40}] (* Michael De Vlieger, Jan 14 2017 *)
Comments