A280954 Number of integer partitions of n using predecessors of prime numbers.
1, 1, 2, 2, 4, 4, 7, 7, 11, 11, 17, 17, 26, 26, 37, 37, 53, 53, 74, 74, 101, 101, 137, 137, 183, 183, 240, 240, 314, 314, 406, 406, 520, 520, 662, 662, 837, 837, 1049, 1049, 1311, 1311, 1627, 1627, 2008, 2008, 2469, 2469, 3021, 3021, 3678, 3678, 4466, 4466
Offset: 0
Keywords
Examples
The partitions for n=0..7 are: (), (1), (2), (11), (21),(111), (4), (22), (211), (1111), (41),(221),(2111),(11111), (6), (42), (411), (222), (2211), (21111), (111111), (61),(421),(4111),(2221),(22111),(211111),(1111111).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=2, 1, b(n, prevprime(i))+`if`(i-1>n, 0, b(n-i+1, i))) end: a:= n-> b(n, nextprime(n)): seq(a(n), n=0..60); # Alois P. Heinz, Jan 11 2017 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(`if`( isprime(d+1), d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 07 2018
-
Mathematica
nn=60;invser=Series[Product[1-x^(Prime[n]-1),{n,PrimePi[nn+1]}],{x,0,nn}]; CoefficientList[1/invser,x]
Comments