cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280962 Number of integer partitions of the n-th even number or the n-th odd number using predecessors of prime numbers.

Original entry on oeis.org

1, 2, 4, 7, 11, 17, 26, 37, 53, 74, 101, 137, 183, 240, 314, 406, 520, 662, 837, 1049, 1311, 1627, 2008, 2469, 3021, 3678, 4466, 5397, 6499, 7804, 9338, 11137, 13251, 15715, 18589, 21938, 25823, 30322, 35535, 41544, 48471, 56448, 65602, 76097, 88128, 101867
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2017

Keywords

Comments

a(n) is both the number of integer partitions of even numbers {0, 2, 4, 6, ...} = A005843 using primes minus one {1, 2, 4, 6, ...} = A006093 and the number of integer partitions of odd numbers {1, 3, 5, 7, ...} = A005408 using primes minus one.

Examples

			The a(4)=11 partitions of 9 are:
(621),   (6111),
(441),   (4221),   (42111),   (411111),
(22221), (222111), (2211111), (21111111),
(111111111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=2, 1,
          b(n, prevprime(i))+`if`(i-1>n, 0, b(n-i+1, i)))
        end:
    a:= n-> b(2*n, nextprime(2*n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 12 2017
  • Mathematica
    nn=60;invser=Product[1-x^(Prime[n]-1),{n,PrimePi[2nn-1]}];
    Table[SeriesCoefficient[1/invser,{x,0,n}],{n,1,2nn-1,2}]

Formula

G.f. G(x) satisfies: (1+x)*G(x^2) = Product_{p prime} 1/(1-x^(p-1)).
a(n) = A280954(A005408(n)) = A280954(A005843(n)).