cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280965 Nonsquares whose distances to the two nearest squares are squares.

Original entry on oeis.org

5, 8, 40, 45, 65, 80, 153, 160, 200, 221, 325, 360, 416, 425, 493, 520, 680, 725, 925, 936, 1025, 1040, 1073, 1088, 1305, 1360, 1768, 1800, 1813, 1845, 1961, 2000, 2320, 2385, 2501, 2600, 2925, 3016, 3185, 3200, 3400, 3445, 3848, 3869, 3944, 3965, 4640, 4745, 5185, 5248, 5265, 5328, 5525, 5576, 5785, 5920, 6120
Offset: 1

Views

Author

Emmanuel Vantieghem, Feb 27 2017

Keywords

Comments

The sequence is infinite because there are terms of it between n^2 and (n+1)^2 whenever 2n+1 is a sum of two squares.

Examples

			a(3) = 40 because the two nearest squares are 36 and 49 and 40 - 36 = 4, 49 - 40 = 9 are both squares.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6120], IntegerQ[Sqrt[# - (Floor[Sqrt[#]])^2]] && IntegerQ[Sqrt[(Ceiling[Sqrt[#]])^2 - #]] &]
  • PARI
    is(n)=my(k=sqrtint(n)); issquare(n-k^2) && issquare((k+1)^2-n) && n>k^2 \\ Charles R Greathouse IV, Feb 27 2017
    
  • PARI
    list(lim)=my(v=List(),k2,K2,n); for(k=2,sqrtint(lim\1)-1, k2=k^2; K2=(k+1)^2; for(s=1,sqrtint(K2-k2-1), n=k2+s^2; if(issquare(K2-n), listput(v,n)))); k2=sqrtint(lim\1)^2; K2=(sqrtint(lim\1)+1)^2; for(n=k2+1,lim, if(issquare(n-k2) && issquare(K2-n), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Feb 27 2017