A280970 Number of comparisons required to sort all permutations of [n] by MTF sort.
0, 0, 3, 25, 208, 1928, 20328, 244536, 3347328, 51858432, 902874240, 17523066240, 375931514880, 8842225904640, 226294152053760, 6258916573056000, 185978410684416000, 5906514709831680000, 199606607730561024000, 7150186413112651776000, 270578540735613960192000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..404
- Project Euler, Problem 523: First Sort I
- Wikipedia, Sorting algorithm
- Index entries for sequences related to sorting
Crossrefs
Cf. A279683.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 0, a(n-1)*n + (n-1)! * (2^n+(n-3)*n/2)) end: seq(a(n), n=0..20); # second Maple program: a:= proc(n) option remember; `if`(n<7, [0$2, 3, 25, 208, 1928, 20328][n+1], ((4*n^2-23*n+2)*a(n-1)-(5*n^3-28*n^2-n+54)*a(n-2) +(2*n-4)*(n^3-2*n^2-24*n+52)*a(n-3) -(4*n-8)*(n-4)*(n-3)^2*a(n-4))/(n-6)) end: seq(a(n), n=0..20);
-
Mathematica
Flatten[{0, Simplify[Table[n!*(n*(n-5)/4 - Pi*I - 1 - 2^(1+n)*LerchPhi[2, 1, 1+n]) , {n, 1, 20}]]}] (* Vaclav Kotesovec, Jan 12 2017 *)
Formula
a(n) = a(n-1)*n + (n-1)! * (2^n+(n-3)*n/2) for n>1, a(0) = a(1) = 0.
a(n) ~ (n-1)! * 2^(n+1). - Vaclav Kotesovec, Jan 12 2017
Comments