cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335558 Positive integers that cannot be expressed as the sum of at most 5 pairwise coprime squares.

Original entry on oeis.org

21, 22, 23, 24, 33, 45, 46, 47, 48, 57, 69, 70, 71, 72, 81, 93, 94, 95, 96, 105, 117, 118, 119, 120, 129, 141, 142, 143, 144, 153, 154, 161, 165, 166, 167, 168, 177, 189, 190, 191, 192, 201, 209, 213, 214, 215, 216, 217, 225, 237, 238, 239, 240, 246, 249, 261
Offset: 1

Views

Author

XU Pingya, Jun 14 2020

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, C20.

Crossrefs

Programs

  • Mathematica
    n = 261;
    a1 = Prime[Range[6]]^2; a2 = a3 = a4 = a5 = {};
    Do[If[GCD[x, y] == 1, AppendTo[a2, x^2 + y^2]], {x, 0, (n/2)^(1/2)}, {y, x, (n - x^2)^(1/2)}];
    Do[If[GCD[x, y] == GCD[x, z] == GCD[y, z] == 1, AppendTo[a3, x^2 + y^2 + z^2]], {x, 0, (n/3)^(1/2)}, {y, x, ((n - x^2)/2)^(1/2)}, {z, y, (n - x^2 - y^2)^(1/2)}];
    Do[If[GCD[x, y] == GCD[x, z] == GCD[x, t] == GCD[y, z] == GCD[y, t] == GCD[z, t] == 1, AppendTo[a4, x^2 + y^2 + z^2 + t^2]], {x, 0, (n/4)^(1/2)}, {y, x, ((n - x^2)/3)^(1/2)}, {z, y, ((n - x^2 - y^2)/2)^(1/2)}, {t, z, (n - x^2 - y^2 - z^2)^(1/2)}];
    Do[If[GCD[x, y] == GCD[x, z] == GCD[x, t] == GCD[x, w] == GCD[y, z] == GCD[y, t] == GCD[y, w] == GCD[z, t] == GCD[z, w] == GCD[t, w] == 1, AppendTo[a5, x^2 + y^2 + z^2 + t^2 + w^2]], {x, 0, (n/5)^(1/2)}, {y, x, ((n - x^2)/4)^(1/2)}, {z, y, ((n - x^2 - y^2)/3)^(1/2)}, {t, z, ((n - x^2 - y^2 - z^2)/2)^(1/2)}, {w, t, (n - x^2 - y^2 - z^2 - t^2)^(1/2)}];
    Complement[Range[n], Union@Join[a1, a2, a3, a4, a5]]
Showing 1-1 of 1 results.