A280996 Prime Matula-Goebel numbers of generalized Bethe trees.
2, 3, 5, 7, 11, 17, 19, 23, 31, 53, 59, 67, 83, 97, 103, 127, 131, 227, 241, 277, 311, 331, 419, 431, 509, 563, 661, 691, 709, 719, 739, 1433, 1523, 1543, 1619, 1787, 1879, 2063, 2221, 2309, 2437, 2897, 3001, 3637, 3671, 3803, 4091, 4637, 4943, 5189, 5381
Offset: 1
Keywords
Examples
a(n) = prime(Product_{i in y} a(i)) where y is the n-th partition in the following sequence, which spans all constant partitions: 1,2,11,3,4,111,22,5,1111,6,7,8,33,222,9,11111,44,...
Programs
-
Mathematica
nn=10000; BTQ[n_]:=Or[n===1,MatchQ[PrimePi/@FactorInteger[n][[All,1]],{_?BTQ}]]; Prime/@Select[Range[PrimePi[nn]],BTQ]
Formula
a(1) = 2; a(n+1) = prime(A214577(n)).
Comments