cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A304360 Lexicographically earliest infinite sequence of numbers m > 1 with the property that none of the prime indices of m are in the sequence.

Original entry on oeis.org

2, 4, 5, 8, 10, 13, 16, 17, 20, 23, 25, 26, 31, 32, 34, 37, 40, 43, 46, 47, 50, 52, 61, 62, 64, 65, 67, 68, 73, 74, 79, 80, 85, 86, 89, 92, 94, 100, 103, 104, 107, 109, 113, 115, 122, 124, 125, 128, 130, 134, 136, 137, 146, 148, 149, 151, 155, 158, 160, 163
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2018

Keywords

Comments

A self-describing sequence.
The prime indices of m are the numbers k such that prime(k) divides m.
The sequence is monotonically increasing, since once a number is rejected it stays rejected. Sequence is closed under multiplication for a similar reason. - N. J. A. Sloane, Aug 26 2018

Examples

			After the initial term 2, the next term cannot be 3 because 3 has prime index 2, and 2 is already in the sequence. The next term could be 10, which has prime indices 1 and 3, but 4 (with prime index 1) is smaller. So a(2) = 4.
		

Crossrefs

For first differences see A317963, for primes see A317964.

Programs

  • Maple
    A:= NULL:
    P:= {}:
    for n  from 2 to 1000 do
      pn:= numtheory:-factorset(n);
      if pn intersect P = {} then
        A:= A, n;
        P:= P union {ithprime(n)};
      fi
    od:
    A; # Robert Israel, Aug 26 2018
  • Mathematica
    gaQ[n_]:=Or[n==0,And@@Cases[FactorInteger[n],{p_,k_}:>!gaQ[PrimePi[p]]]];
    Select[Range[100],gaQ]

Extensions

Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019

A320269 Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

First differs from A331871 in lacking 1589.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
		

Crossrefs

The same-tree version is A291441.
Not requiring lone-child-avoidance gives A320230.
The enumeration of these trees by vertices is A320268.
The semi-lone-child-avoiding version is A331936.
If the non-leaf branches are all different instead of equal we get A331965.
The fully-achiral case is A331967.
Achiral rooted trees are counted by A003238.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 823543, 1048576, 2097152, 2248091, 2476099, 2621161, 4194304
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
      1: o
      4: (oo)
      8: (ooo)
     16: (oooo)
     32: (ooooo)
     49: ((oo)(oo))
     64: (oooooo)
    128: (ooooooo)
    256: (oooooooo)
    343: ((oo)(oo)(oo))
    361: ((ooo)(ooo))
    512: (ooooooooo)
   1024: (oooooooooo)
   2048: (ooooooooooo)
   2401: ((oo)(oo)(oo)(oo))
   2809: ((oooo)(oooo))
   4096: (oooooooooooo)
   6859: ((ooo)(ooo)(ooo))
   8192: (ooooooooooooo)
  16384: (oooooooooooooo)
  16807: ((oo)(oo)(oo)(oo)(oo))
  17161: ((ooooo)(ooooo))
  32768: (ooooooooooooooo)
  51529: (((oo)(oo))((oo)(oo)))
  65536: (oooooooooooooooo)
  96721: ((oooooo)(oooooo))
		

Crossrefs

A subset of A025475 (nonprime prime powers).
The enumeration of these trees by vertices is A167865.
Not requiring lone-child-avoidance gives A214577.
The semi-achiral version is A320269.
The semi-lone-child-avoiding version is A331992.
Achiral rooted trees are counted by A003238.
MG-numbers of planted achiral rooted trees are A280996.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A291636 (lone-child-avoiding).

A331992 Matula-Goebel numbers of semi-lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 27, 32, 49, 64, 81, 128, 243, 256, 343, 361, 512, 529, 729, 1024, 2048, 2187, 2401, 2809, 4096, 6561, 6859, 8192, 10609, 12167, 16384, 16807, 17161, 19683, 32768, 51529, 59049, 65536, 96721, 117649, 130321, 131072, 148877, 175561, 177147
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all semi-lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
     1: o
     2: (o)
     4: (oo)
     8: (ooo)
     9: ((o)(o))
    16: (oooo)
    27: ((o)(o)(o))
    32: (ooooo)
    49: ((oo)(oo))
    64: (oooooo)
    81: ((o)(o)(o)(o))
   128: (ooooooo)
   243: ((o)(o)(o)(o)(o))
   256: (oooooooo)
   343: ((oo)(oo)(oo))
   361: ((ooo)(ooo))
   512: (ooooooooo)
   529: (((o)(o))((o)(o)))
   729: ((o)(o)(o)(o)(o)(o))
  1024: (oooooooooo)
		

Crossrefs

Except for two, a subset of A025475 (nonprime prime powers).
Not requiring achirality gives A331935.
The semi-achiral version is A331936.
The fully-chiral version is A331963.
The semi-chiral version is A331994.
The non-semi version is counted by A331967.
The enumeration of these trees by vertices is A331991.
Achiral rooted trees are counted by A003238.
MG-numbers of achiral rooted trees are A214577.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[FactorInteger[n]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A331935 (semi-lone-child-avoiding).

A322385 2 and prime numbers whose prime index is a product of at least two not necessarily distinct prime numbers already in the sequence.

Original entry on oeis.org

2, 7, 19, 43, 53, 107, 131, 163, 227, 263, 311, 383, 443, 521, 577, 613, 719, 751, 881, 1021, 1193, 1301, 1307, 1423, 1619, 1667, 1699, 1993, 2003, 2161, 2309, 2311, 2437, 2539, 2693, 2939, 2969, 3167, 3209, 3671, 3767, 3779, 3833, 4423, 4481, 4597, 4871, 5147
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			We have 1993 = prime(301) = prime(7 * 43). Since 7 and 43 already belong to the sequence, so does 1993.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_]:=And[PrimeQ[n],!PrimeQ[PrimePi[n]],And@@ppQ/@First/@If[n==2,{},FactorInteger[PrimePi[n]]]];
    Select[Range[1000],ppQ]
Showing 1-5 of 5 results.