cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281000 Triangle read by rows: T(n,k) = binomial(2*n+1, 2*k+1)*binomial(2*n-2*k, n-k)/(n+1-k) for 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 10, 10, 1, 35, 70, 21, 1, 126, 420, 252, 36, 1, 462, 2310, 2310, 660, 55, 1, 1716, 12012, 18018, 8580, 1430, 78, 1, 6435, 60060, 126126, 90090, 25025, 2730, 105, 1, 24310, 291720, 816816, 816816, 340340, 61880, 4760, 136, 1, 92378, 1385670, 4988412, 6651216, 3879876, 1058148, 135660, 7752, 171, 1
Offset: 0

Views

Author

Werner Schulte, Jan 12 2017

Keywords

Examples

			Triangle begins:
n\k:      0       1       2       3       4      5     6    7  8  . . .
  0:      1
  1:      3       1
  2:     10      10       1
  3:     35      70      21       1
  4:    126     420     252      36       1
  5:    462    2310    2310     660      55      1
  6:   1716   12012   18018    8580    1430     78     1
  7:   6435   60060  126126   90090   25025   2730   105    1
  8:  24310  291720  816816  816816  340340  61880  4760  136  1
  etc.
T(3,2) = binomial(7,5) * binomial(2,1) / (3+1-2) = 21 * 2 / 2 = 21. - _Indranil Ghosh_, Feb 15 2017
		

Crossrefs

Row sums are A099250.
Triangle related to A000108, A097610, A280580.

Programs

  • Mathematica
    Table[Binomial[2n+1,2k+1] Binomial[2n-2k,n-k]/(n+1-k),{n,0,10},{k,0,n}]// Flatten (* Harvey P. Dale, Nov 25 2018 *)

Formula

T(n,k) = A097610(2*n+1, 2*k+1) = binomial(2*n+1, 2*k+1)*A000108(n-k) = A280580(n,k)*(2*n+1)/(2*k+1) for 0 <= k <= n.
Recurrences: T(n,0) = (2*n+1)*A000108(n) and
(1) T(n,k) = T(n,k-1)*(n+1-k)*(n+2-k)/(2*k*(2*k+1)) for 0 < k <= n,
(2) T(n,k) = T(n-1, k-1)*n*(2*n+1)/(k*(2*k+1)).
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^(2*k+1) satisfy the recurrence equation p"(n,x) = (2*n+1)*2*n*p(n-1,x) with initial value p(0,x) = x (n > 0, p" is the second derivative of p), and Sum_{n>=0} p(n,x)*t^(2*n+1)/ ((2*n+1)!) = sinh(x*t)*(Sum_{n>=0} A000108(n)*t^(2*n)/((2*n)!)).
Conjectures:
(1) Antidiagonal sums equal A001003(n+1);
(2) Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)*A000108(k)*A103365(k) = A000007(n);
(3) Matrix inverse equals T(n,k)*A103365(n+1-k).
Sum_{k=0..n} (n+1-k)*T(n,k) = A002426(2*n+1) = A273055(n).
Sum_{k=0..n} T(n,k)*(2*k+1)*A000108(k) = (2*n+1)*A000108(n)*A000108(n+1) = A125558(n+1).
Matrix product: Sum_{i=0..n} T(n,i)*T(i,k) = T(n,k)*A000108(n+1-k) for 0<=k<=n.