A281001 Square array read by antidiagonals downwards: A(n, 1) = smallest Wieferich prime to base n and A(n, k) = smallest Wieferich prime to base A(n, k-1) for k > 1.
1093, 2, 11, 1093, 71, 1093, 2, 3, 2, 2, 1093, 11, 1093, 1093, 66161, 2, 71, 2, 2, 2, 5, 1093, 3, 1093, 1093, 1093, 2, 3, 2, 11, 2, 2, 2, 1093, 11, 2, 1093, 71, 1093, 1093, 1093, 2, 71, 1093, 3, 2, 3, 2, 2, 2, 1093, 3, 2, 11, 71, 1093, 11, 1093, 1093, 1093, 2
Offset: 2
Examples
Array starts 1093, 2, 1093, 2, 1093, 2, ... 11, 71, 3, 11, 71, 3, ... 1093, 2, 1093, 2, 1093, 2, ... 2, 1093, 2, 1093, 2, 1093, ... 66161, 2, 1093, 2, 1093, 2, ... 5, 2, 1093, 2, 1093, 2, ... ....
Programs
-
PARI
smallestwieftobase(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p))) table(rows, cols) = for(x=2, rows+1, my(i=0, w=smallestwieftobase(x)); while(i < cols, print1(w, ", "); w=smallestwieftobase(w); i++); print("")) table(7, 5) \\ print initial 5 terms of upper 7 rows of array
Comments