A281013 Tetrangle T(n,k,i) = i-th part of k-th prime composition of n.
1, 2, 2, 1, 3, 2, 1, 1, 3, 1, 4, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 3, 2, 4, 1, 5, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 3, 1, 2, 3, 2, 1, 4, 1, 1, 4, 2, 5, 1, 6, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1, 3, 2, 2, 3, 3, 1, 4, 1, 1, 1, 4, 1, 2, 4, 2, 1, 4, 3, 5, 1, 1, 5, 2, 6, 1, 7
Offset: 1
Examples
The prime factorization of (1, 1, 4, 2, 3, 1, 5, 5) is: (11423155) = (1)*(1)*(5)*(5)*(4231). The prime factorizations of the initial terms of A000002 are: (1) = (1) (12) = (1)*(2) (122) = (1)*(2)*(2) (1221) = (1)*(221) (12211) = (1)*(2211) (122112) = (1)*(2)*(2211) (1221121) = (1)*(221121) (12211212) = (1)*(2)*(221121) (122112122) = (1)*(2)*(2)*(221121) (1221121221) = (1)*(221)*(221121) (12211212212) = (1)*(2)*(221)*(221121) (122112122122) = (1)*(2)*(2)*(221)*(221121). Read as a sequence: (1), (2), (21), (3), (211), (31), (4), (2111), (221), (311), (32), (41), (5). Read as a triangle: (1) (2) (21), (3) (211), (31), (4) (2111), (221), (311), (32), (41), (5). Read as a sequence of triangles: 1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 3 3 1 2 2 1 2 2 1 1 2 1 2 1 1 4 3 1 1 3 1 1 1 2 2 1 1 1 3 2 3 1 2 2 2 2 1 4 1 3 2 1 3 1 1 1 1 5 4 1 1 3 1 1 2 4 2 3 1 2 1 5 1 3 2 1 1 6 3 2 2 3 3 1 4 1 1 1 4 1 2 4 2 1 4 3 5 1 1 5 2 6 1 7.
Crossrefs
The binary version is A329318.
The binary non-"co" version is A102659.
A sequence listing all Lyndon compositions is A294859.
Numbers whose binary expansion is co-Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.
Binary Lyndon words are A001037.
Lyndon compositions are A059966.
Normal Lyndon words are A060223.
Programs
-
Mathematica
colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n],colynQ],lexsort],{n,5}] (* Gus Wiseman, Nov 15 2019 *)
Formula
Row lengths are A059966(n) = number of prime compositions of n.
Comments