A281082 Expansion of Product_{k>=0} (1 + x^(2*k*(k+1)+1)).
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 2, 1
Offset: 0
Keywords
Examples
a(66) = 2 because we have [61, 5] and [41, 25].
Links
- Eric Weisstein's World of Mathematics, Centered Square Number
- Index entries for sequences related to centered polygonal numbers
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 105; CoefficientList[Series[Product[1 + x^(2 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=0} (1 + x^(2*k*(k+1)+1)).
Comments