A281084 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)+1)).
1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1
Offset: 0
Keywords
Examples
a(98) = 2 because we have [91, 7] and [61, 37].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hex Number
- Index entries for sequences related to centered polygonal numbers
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)+1)).
Comments