cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281090 Number of 2 X 2 matrices with all elements in {0,...,n} and prime permanent.

Original entry on oeis.org

0, 1, 27, 85, 139, 307, 399, 765, 1043, 1517, 1889, 3021, 3523, 5299, 6269, 7671, 9209, 12729, 14179, 18995, 21307, 24991, 28303, 36261, 39307, 47541, 52833, 61173, 67113, 82125, 86601, 104655, 114695, 128069, 139213, 156653, 165819, 194591, 209753, 230835, 245457, 283887
Offset: 0

Views

Author

Indranil Ghosh, Jan 20 2017

Keywords

Examples

			For n = 4, a few of the possible matrices are [0,1;3,3], [0,1;3,4], [0,2;1,0], [0,2;1,1], [0,2;1,2], [2,0;1,1], [2,0;2,1], [2,0;3,1], [2,0;4,1], [2,1;0,1], [4,3;1,1], [4,3;1,2], [4,3;1,4], [4,3;3,1], [4,3;3,2], [3,2;2,3], [3,2;4,1], [3,2;4,3], [3,3;0,1], [3,3;1,0], ... There are 139 possibilities. So, a(4) = 139.
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    def t(n):
        s=0
        for a in range(0, n+1):
            for b in range(0, n+1):
                for c in range(0, n+1):
                    for d in range(0, n+1):
                        if isprime(a*d+b*c)==True:
                            s+=1
        return s
    for i in range(0, 152):
        print(f"{i} {t(i)}")