A281119 Number of complete tree-factorizations of n >= 2.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 9, 1, 1, 2, 3, 1, 4, 1, 12, 1, 1, 1, 12, 1, 1, 1, 9, 1, 4, 1, 3, 3, 1, 1, 29, 1, 3, 1, 3, 1, 9, 1, 9, 1, 1, 1, 17, 1, 1, 3, 34, 1, 4, 1, 3, 1, 4, 1, 44, 1, 1, 3, 3, 1, 4, 1, 29, 5, 1, 1
Offset: 2
Keywords
Examples
The a(36)=12 complete tree-factorizations of 36 are: (2(2(33))), (2(3(23))), (2(233)), (3(2(23))), (3(3(22))), (3(223)), ((22)(33)), ((23)(23)), (22(33)), (23(23)), (33(22)), (2233).
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..10000
- A. Knopfmacher, M. Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal 10(1), 2006.
Programs
-
Mathematica
postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; treefacs[n_]:=If[n<=1,{{}},Prepend[Join@@Function[q,Tuples[treefacs/@q]]/@DeleteCases[postfacs[n],{n}],n]]; Table[Length[Select[treefacs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,2,83}]
-
PARI
seq(n)={my(v=vector(n), w=vector(n)); v[1]=1; for(k=2, n, w[k]=v[k]+isprime(k); forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=w[k]^e*v[i]))); w[2..n]} \\ Andrew Howroyd, Nov 18 2018
Formula
a(p^n) = A196545(n) for prime p. - Andrew Howroyd, Nov 18 2018
Comments