cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281131 First appearance of 2^n in A281130.

Original entry on oeis.org

1, 3, 7, 13, 23, 41, 98, 223, 437, 699, 1213, 2624, 4674, 11163, 21300, 40858, 73977, 148591, 297394, 567076, 1100738, 2243474, 4340628, 8726122, 17397270, 34701556, 68372147, 136254352, 271069771, 546613630, 1088921640, 2163138108, 4334318825
Offset: 0

Views

Author

Rok Cestnik, Jan 15 2017

Keywords

Comments

Conjecture: a(n) ~ 2^n.

Examples

			a(1) = 3 because A281130(3) = 2^1 and A281130(i) != 2^1 for i < 3.
a(2) = 7 because A281130(7) = 2^2 and A281130(i) != 2^2 for i < 7.
		

Crossrefs

Programs

  • C
    #include
    #include
    int main(void){
       int N = 1000000000;
       int *a = (int*)malloc((N+1)*sizeof(int));
       int max = 1;
       int maxindex = 1;
       a[1] = 1;
       a[2] = 1;
       for(int i = 2; i < N; ++i){
          if(a[i-1] < a[i]) a[i+1] = a[i-a[i]];
          else a[i+1] = 2*a[i];
          if(a[i+1] > max){
             max = a[i+1];
             printf("%d %d\n", maxindex, i+1);
             maxindex++;
          }
       }
       return 0;
    }
  • Mathematica
    a[n_] := a[n] = If[a[n - 2] < a[n - 1], a[n - 1 - a[n - 1]], 2 a[n - 1]]; a[1] = a[2] = 1; Function[w, Function[e, First /@ Lookup[w, 2^e]]@ Range[0, Log2@ Max@ Keys@ w]]@ PositionIndex@ Array[a, 10^7] (* Michael De Vlieger, Jan 21 2017, Version 10. *)

Extensions

a(31)-a(32) from Rok Cestnik, Aug 27 2017