A281145 Number of same-trees of weight n.
1, 2, 2, 6, 2, 14, 2, 54, 10, 38, 2, 494, 2, 134, 42, 4470, 2, 3422, 2, 10262, 138, 2054, 2, 490926, 34, 8198, 1514, 314294, 2, 628318, 2, 30229110, 2058, 131078, 162, 150147342, 2, 524294, 8202, 628073814, 2, 109952254, 2, 371210294, 207370, 8388614, 2
Offset: 1
Keywords
Examples
The a(6)=14 same-trees are: 6, (33), (222), (3(111)), ((111)3), (22(11)), (2(11)2), ((11)22), (2(11)(11)), ((11)2(11)), ((11)(11)2), ((111)(111)), ((11)(11)(11)), (111111). The a(9)=10 same-trees are: 9, (333), (33(111)), (3(111)3), ((111)33), (3(111)(111)), ((111)3(111)), ((111)(111)3), ((111)(111)(111)), (111111111).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..4000
Programs
-
Mathematica
a[n_]:=1+DivisorSum[n,b[#]^(n/#)&]-b[n]/.b->a; Array[a,47]
-
PARI
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sumdiv(n, d, v[n/d]^d)); v} \\ Andrew Howroyd, Aug 20 2018
Formula
a(n) = 1 + Sum a(d)^(n/d) where the sum is over divisors less than n.
Comments