cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281182 E.g.f. C(x) + S(x) = exp( Integral C(x)^3 dx ) where C(x) and S(x) are described by A281181 and A281180, respectively.

Original entry on oeis.org

1, 1, 1, 4, 13, 88, 493, 4672, 37369, 454144, 4732249, 70084096, 901188997, 15728822272, 240798388357, 4836914249728, 85948640603761, 1952137912385536, 39504564917358001, 1000749157519458304, 22726779729476308093, 635146072839001735168, 15998009117983994065693, 488855521088102855606272, 13526765851190230940840809, 448599416591747486039670784, 13528070218935445806530640649
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 88*x^5/5! + 493*x^6/6! + 4672*x^7/7! + 37369*x^8/8! + 454144*x^9/9! + 4732249*x^10/10! + 70084096*x^11/11! + 901188997*x^12/12! +...
where A(x) = C(x) + S(x) and the series for C(x) and S(x) begin:
C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! +...+ A281181(n)*x^(2*n)/(2*n)! +...
S(x) = S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +...
such that C(s) + S(x) = exp( Integral C(x)^3 dx ).
The logarithm of the e.g.f. begins:
log(C(x) + S(x)) = x + 3*x^3/3! + 57*x^5/5! + 2739*x^7/7! + 246801*x^9/9! + 35822307*x^11/11! + 7636142793*x^13/13! + 2246286827091*x^15/15! +...
which equals Integral C(x)^3 dx.
Also, log(C(x) + S(x)) = Series_Reversion( Integral 1/cosh(x)^3 dx ).
		

Crossrefs

Cf. A281180 (S), A281181 (C), A281183 (C^2), A281184 (C^3).

Programs

  • Mathematica
    CoefficientList[Exp[InverseSeries[Series[(Sinh[x]/Cosh[x]^2 + ArcTan[Sinh[x]])/2, {x, 0, 30}], x]], x] * Range[0, 30]! (* Vaclav Kotesovec, Sep 02 2017 *)
  • PARI
    {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^4 +x*O(x^n)); C = 1 + intformal( S*C^3 ) ); n!*polcoeff(C + S, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ) */
    {a(n) = my(S=x); S = serreverse( intformal( 1/(1 + x^2 +x*O(x^n))^2)); n!*polcoeff(sqrt(1+S^2) + S, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
E.g.f. exp( Series_Reversion( ( sinh(x)/cosh(x)^2 + atan(sinh(x)) )/2 ) ).
E.g.f. C(x) + S(x) where related series S(x) and C(x) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).