cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281184 E.g.f. C(x)^3 = d/dx log(C(x) + S(x)), where C(x) and S(x) are described by A281181 and A281180, respectively.

Original entry on oeis.org

1, 3, 57, 2739, 246801, 35822307, 7636142793, 2246286827091, 871869519033249, 431649452286233283, 265466419357802436057, 198541440131880248161779, 177448471205103040365902001, 186781461066456338787698757027, 228695537454759099917373077023593, 322272887805877963568678968978370451, 517868815187736150011294497645677002049
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2017

Keywords

Examples

			E.g.f.: C(x)^3 = 1 + 3*x^2/2! + 57*x^4/4! + 2739*x^6/6! + 246801*x^8/8! + 35822307*x^10/10! + 7636142793*x^12/12! + 2246286827091*x^14/14! + 871869519033249*x^16/16! + 431649452286233283*x^18/18! +...
where related series C(x) and S(x) begin:
C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! +...+ A281181(n)*x^(2*n)/(2*n)! +...
S(x) = S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +...
Also, the logarithm of C(x) + S(x) begins:
log(C(x) + S(x)) = x + 3*x^3/3! + 57*x^5/5! + 2739*x^7/7! + 246801*x^9/9! + 35822307*x^11/11! + 7636142793*x^13/13! + 2246286827091*x^15/15! +...
which equals Integral C(x)^3 dx.
		

Crossrefs

Cf. A281180 (S), A281181 (C), A281182 (C+S), A281183 (C^2).

Programs

  • PARI
    {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^4 +x*O(x^(2*n))); C = 1 + intformal( S*C^3 ) ); (2*n)!*polcoeff(C^3, 2*n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* E.g.f. d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ) */
    {a(n) = my(C3=1); C3 = deriv( serreverse( intformal( 1/cosh(x +x*O(x^(2*n)))^3 ) ) ); (2*n)!*polcoeff(C3, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).
E.g.f. C(x)^3 = d/dx Series_Reversion( ( sinh(x)/cosh(x)^2 + atan(sinh(x)) )/2 ).
E.g.f. C(x)^3 = d/dx log(C(x) + S(x)) where C(x) and S(x) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).