cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281195 Numbers m such that gcd(s1,s2) = number of the Collatz iterations of m where s1 is the sum of the odd terms and s2 the sum of the even terms in the Collatz trajectory.

Original entry on oeis.org

2, 808, 4801, 10408, 14661, 25072, 34338, 39328, 40384, 45902, 62627, 78547, 79134, 108674, 113264, 113474, 125310, 125344, 144172, 152949, 158979, 159382, 173034, 176778, 209202, 219920, 226565, 230090, 231350, 232207, 243482, 248389, 291200, 300364, 309406
Offset: 1

Views

Author

Michel Lagneau, Jan 17 2017

Keywords

Comments

Or numbers m such that A277068(m) = A006577(m).
The corresponding values of gcd(s1,s2) are given by the sequence {b(n)} = {1, 28, 121, 29, 45, 64, 80, 44, 44, 70, 86, 138, 76, 40, 105, 105, 180, 56, 43, 82, 170, 46, 72, 72, 111, 36, 62, 36, 137, 62, 36, 62, 26, 88, 78, 78, ...}
We observe pairs (b(n), b(n)) with b(n): 44, 105, 72, 78, 68, 146, 35, 74, 61, 74, 87, 77, 90, 38, 44, ...
We observe triples (b(n), b(n), b(n)) with b(n): 78, 35, 77, 80, 106, ...
We observe quadruples (b(n), b(n), b(n), b(n)) with b(n): 35, 70, ...

Examples

			808 is in the sequence because the Collatz trajectory is given by the 28 terms of the set {808 404 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1}. The sum of the even terms is 2408, the sum of the odd terms is 196 and gcd(2408,196) = 28.
Or A277068(808) = A006577(808) = 28.
		

Crossrefs

Programs

  • Mathematica
    g[n_]:=Module[{a=n,k=0},While[a!=1,k++;If[EvenQ[a],a=a/2,a=a*3+1]];k];Array[g,10^4];Collatz[n_]:=NestWhileList[If[OddQ[#],3#+1,#/2]&,n,#>1&];f[n_]:=Block[{c=Collatz@n},GCD[Plus@@Select[c,OddQ],Plus@@Select[c,EvenQ]]];Array[f,10^4];Do[If[g[m]==f[m],Print[m]],{m,1,3*10^5}]