A281269 Triangle read by rows: T(n,k) is the number of edge covers of the complete labeled graph on n nodes that are minimal and have exactly k edges, n>=2, 1<=k<=n-1.
1, 0, 3, 0, 3, 4, 0, 0, 30, 5, 0, 0, 15, 150, 6, 0, 0, 0, 315, 525, 7, 0, 0, 0, 105, 3360, 1568, 8, 0, 0, 0, 0, 3780, 24570, 4284, 9, 0, 0, 0, 0, 945, 69300, 142380, 11070, 10, 0, 0, 0, 0, 0, 51975, 866250, 713790, 27555, 11, 0, 0, 0, 0, 0, 10395, 1455300, 8399160, 3250500, 66792, 12
Offset: 2
Examples
1; 0, 3; 0, 3, 4; 0, 0, 30, 5; 0, 0, 15, 150, 6; 0, 0, 0, 315, 525, 7; 0, 0, 0, 105, 3360, 1568, 8; 0, 0, 0, 0, 3780, 24570, 4284, 9; 0, 0, 0, 0, 945, 69300, 142380, 11070, 10;
Links
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Edge Cover
- Eric Weisstein's World of Mathematics, Edge Cover Polynomial
Crossrefs
Programs
-
Mathematica
nn = 12; list = Range[0, nn]! CoefficientList[Series[Exp[z (Exp[x] - x - 1)], {x, 0, nn}], x];Table[Map[Drop[#, 1] &, Drop[Range[0, nn]! CoefficientList[Series[Exp[u z^2/2!] Sum[(u z)^j/j!*list[[j + 1]], {j, 0, nn}], {z, 0, nn}], {z, u}], 2]][[n, 1 ;; n]], {n, 1, nn - 1}] // Grid
Formula
E.g.f.: exp(y*x^2/2) * Sum_{j>=0} (y*x)^j/j! * Sum_{k=0..floor(j/2)} A008299(j,k)*x^k.
Comments