A281297 Triangular array of generalized Narayana numbers T(n,k) = 4*binomial(n+1,k)* binomial(n-4,k-1)/(n+1) for n >= 3 and 0 <= k <= n-3, read by rows.
1, 0, 4, 0, 4, 10, 0, 4, 24, 20, 0, 4, 42, 84, 35, 0, 4, 64, 224, 224, 56, 0, 4, 90, 480, 840, 504, 84, 0, 4, 120, 900, 2400, 2520, 1008, 120, 0, 4, 154, 1540, 5775, 9240, 6468, 1848, 165, 0, 4, 192, 2464, 12320, 27720, 29568, 14784, 3168, 220, 0, 4, 234, 3744, 24024, 72072, 108108, 82368, 30888, 5148
Offset: 3
Examples
The triangle begins: n\k: 0 1 2 3 4 5 6 7 8 9 10 . . . 03 : 1 04 : 0 4 05 : 0 4 10 06 : 0 4 24 20 07 : 0 4 42 84 35 08 : 0 4 64 224 224 56 09 : 0 4 90 480 840 504 84 10 : 0 4 120 900 2400 2520 1008 120 11 : 0 4 154 1540 5775 9240 6468 1848 165 12 : 0 4 192 2464 12320 27720 29568 14784 3168 220 13 : 0 4 234 3744 24024 72072 108108 82368 30888 5148 286 etc.
Links
- David Callan, Generalized Narayana Numbers .
Formula
Row sums are A033184(n+1,4).
G.f.: A(x) = x*A281260(x,y)^2. - Vladimir Kruchinin, Oct 10 2020
Comments