cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281317 Primes p such that p == i mod d(i) where d(i) are the prime divisors of 2p+1.

Original entry on oeis.org

7, 13, 37, 67, 157, 337, 367, 607, 787, 937, 1093, 3037, 3307, 7717, 9187, 12757, 15187, 19687, 27337, 35437, 42187, 49207, 69457, 75937, 267907, 347287, 683437, 744187, 797161, 882367, 1148437, 1458607, 1736437, 2067187, 2870437, 2929687, 3125587, 4823437
Offset: 1

Views

Author

Michel Lagneau, Jan 20 2017

Keywords

Comments

Subsequence of A053176.
a(n)== 1 mod 6 or a(n)== 1, 7 mod 12. A majority of members of the sequence are congruent to 7 mod 10.
omega(2*a(n)+1) = 1 for n = 2, 11, 29,... => 2*a(n)+1 = 3^3, 3^7, 3^13,... where omega(n) = A001221(n).

Examples

			157 is in the sequence because  2*157 + 1 = 315 = 3 ^ 2 * 5 * 7 => 157 == 1 (mod 3), 157 == 2 (mod 5) and 157 == 3 (mod 7).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 to 10^5 do:
      p:=ithprime(n):q:=2*p+1:x:=factorset(q):n1:=nops(x):j:=0:
       for i from 1 to n1 do:
         if irem(p,x[i])=i
          then j:=j+1:
          else
         fi:
       od:
        if j=n1
         then
         printf(`%d, `,p):
         else
        fi:
      od:
  • Mathematica
    Select[Prime@ Range[10^6], Function[p, Function[i, Times @@ Boole@ MapIndexed[Mod[p, #1] == First@ #2 &, FactorInteger[i][[All, 1]]] > 0][2 p + 1]]] (* Michael De Vlieger, Jan 20 2017 *)