cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281351 Irregular triangle read by rows: coefficients of polynomials arising in calculation of squares of certain web-coloring matrices.

Original entry on oeis.org

1, 1, 2, 2, 6, 12, 6, 1, 26, 73, 72, 24, 12, 156, 516, 732, 480, 120, 2, 126, 1206, 4322, 7680, 7320, 3600, 720, 52, 1408, 11352, 42448, 87652, 106800, 76800, 30240, 5040, 11, 992, 17406, 125444, 480731, 1103460, 1601148, 1486800, 859320, 282240, 40320
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Examples

			Triangle begins:
1,
1,
2,2,
6,12,6,
1,26,73,72,24,
12,156,516,732,480,120,
2,126,1206,4322,7680,7320,3600,720,
...
		

Crossrefs

Cf. A269722.

Programs

  • Mathematica
    row[n_] := If[n<2, {1}, Sum[x^m*Sum[(-1)^(m-b-c) Binomial[j, b] Binomial[m-j, c] Binomial[b c, n], {c, 0, m-j}], {m, 2, 2n}, {j, 1, m-1}, {b, 0, j}] // DeleteCases[CoefficientList[#, x], 0]&];
    Table[row[n], {n, 0, 8}] // Flatten (* from PARI *)
  • PARI
    vL(n) = if (n==0, [1], select(x->x, Vecrev(sum(m=2, 2*n, x^m*sum(j=1, m-1, sum(b=0, j, sum(c=0, m-j, (-1)^(m-b-c)*binomial(j,b)*binomial(m-j,c)*binomial(b*c, n))))))));
    tabf(nn) = for (n=0, nn, rown = vL(n); for (k=1, #rown, print1(rown[k], ", ")); print()); \\ Michel Marcus, Jan 21 2017

Formula

See Theorem 23 in the Dukes link.

Extensions

More terms from Michel Marcus, Jan 21 2017