A281351 Irregular triangle read by rows: coefficients of polynomials arising in calculation of squares of certain web-coloring matrices.
1, 1, 2, 2, 6, 12, 6, 1, 26, 73, 72, 24, 12, 156, 516, 732, 480, 120, 2, 126, 1206, 4322, 7680, 7320, 3600, 720, 52, 1408, 11352, 42448, 87652, 106800, 76800, 30240, 5040, 11, 992, 17406, 125444, 480731, 1103460, 1601148, 1486800, 859320, 282240, 40320
Offset: 0
Examples
Triangle begins: 1, 1, 2,2, 6,12,6, 1,26,73,72,24, 12,156,516,732,480,120, 2,126,1206,4322,7680,7320,3600,720, ...
Links
- Mark Dukes, Chris D White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016. See Fig. 6 p. 14.
- Mark Dukes, Chris D White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45 See Fig. 6 p. 17.
Crossrefs
Cf. A269722.
Programs
-
Mathematica
row[n_] := If[n<2, {1}, Sum[x^m*Sum[(-1)^(m-b-c) Binomial[j, b] Binomial[m-j, c] Binomial[b c, n], {c, 0, m-j}], {m, 2, 2n}, {j, 1, m-1}, {b, 0, j}] // DeleteCases[CoefficientList[#, x], 0]&]; Table[row[n], {n, 0, 8}] // Flatten (* from PARI *)
-
PARI
vL(n) = if (n==0, [1], select(x->x, Vecrev(sum(m=2, 2*n, x^m*sum(j=1, m-1, sum(b=0, j, sum(c=0, m-j, (-1)^(m-b-c)*binomial(j,b)*binomial(m-j,c)*binomial(b*c, n)))))))); tabf(nn) = for (n=0, nn, rown = vL(n); for (k=1, #rown, print1(rown[k], ", ")); print()); \\ Michel Marcus, Jan 21 2017
Formula
See Theorem 23 in the Dukes link.
Extensions
More terms from Michel Marcus, Jan 21 2017