A281373 Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
0, 1, 60, 1680, 30280, 405678, 4369680, 39729200, 315045840, 2230260741, 14340456648, 84870112272, 467160257760, 2411818867430, 11759239565472, 54457051387536, 240692336520352, 1019498573990610, 4152992658207660, 16319887656747248, 62032458633713904, 228608370781579488
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- Henry Cohn, A conceptual breakthrough in sphere packing, arXiv preprint arXiv:1611.01685 [math.MG], 2016.
- Henry Cohn, A conceptual breakthrough in sphere packing, Notices Amer. Math. Soc., 64:2 (2017), pp. 102-115.
Crossrefs
Programs
-
Maple
with(numtheory); M:=100; E := proc(k) local n, t1; global M; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1); series(t1, q, M+1); end; e2:=E(2); e4:=E(4); e6:=E(6); t1:=series((e2*e4-e6)^2/518400,q,M+1); t2:=series((e4^3-e6^2)/1728,q,M+1); t3:=series(t1/t2,q,M+1); seriestolist(t3);
-
Mathematica
terms = 22; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; (E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* Jean-François Alcover, Feb 27 2018 *)
Formula
a(n) ~ exp(4*Pi*sqrt(n)) / (14400 * sqrt(2) * Pi^2 * n^(7/4)). - Vaclav Kotesovec, Jun 06 2018
Comments