cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281374 Coefficients in q-expansion of E_2^2, where E_2 is the Eisenstein series shown in A006352.

Original entry on oeis.org

1, -48, 432, 3264, 9456, 21600, 39744, 66432, 105840, 147984, 220320, 281664, 393792, 475104, 646272, 743040, 980592, 1091232, 1432944, 1536960, 1965600, 2118144, 2649024, 2761344, 3516480, 3557040, 4433184, 4594560, 5575296, 5603040, 6998400, 6864384, 8407152, 8494848, 10085472, 9918720, 12319152
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    series(e2^2,q,M+1);
    seriestolist(%);
  • Mathematica
    terms = 37;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
    (* or *)
    Join[{1}, Table[240*DivisorSigma[3, n] - 288*n*DivisorSigma[1, n], {n, 1, 50}]] (* Vaclav Kotesovec, Aug 02 2025 *)

Formula

For n>0, a(n) = 240*A001158(n) - 288*n*A000203(n). - Vaclav Kotesovec, Aug 02 2025