A282012
Coefficients in q-expansion of E_4^4, where E_4 is the Eisenstein series shown in A004009.
Original entry on oeis.org
1, 960, 354240, 61543680, 4858169280, 137745912960, 2120861041920, 21423820362240, 158753769048000, 928983317334720, 4512174992346240, 18847874280625920, 69518972236842240, 230951926208599680, 701949379778818560, 1975788826748167680
Offset: 0
- G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 207.
-
terms = 16;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282102
Coefficients in q-expansion of E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
1, -288, -129168, -1927296, 65152656, 1535768640, 15223408704, 98001292032, 474055120080, 1870878793824, 6312358836000, 18835985199744, 50831420617152, 126257508465984, 292348744636032, 637474437331200, 1319883180896592, 2610964045674432, 4963491913583664
Offset: 0
-
terms = 19;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E2[x]*E4[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A282101
Coefficients in q-expansion of E_2*E_4^2, where E_2, E_4 are the Eisenstein series shown in A006352, A004009, respectively.
Original entry on oeis.org
1, 456, 50328, -470496, -21784008, -234371664, -1446514848, -6502690752, -23328111240, -71276388312, -191952331632, -468159788448, -1052750026272, -2212261706256, -4394299104576, -8303419066176, -15060718806024, -26284654025712, -44471780630856
Offset: 0
-
terms = 19;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E2[x]*E4[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A282292
Coefficients in q-expansion of E_10^2, where E_10 is the Eisenstein series A013974.
Original entry on oeis.org
1, -528, -201168, 61114944, 20946935856, 1443146395680, 46053422547264, 861726789128832, 10894843149545520, 102119072037503664, 755968133350219680, 4623420033182073024, 24151660069581371712, 110516194189880866464, 451789196756619249792
Offset: 0
-
terms = 15;
E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
E10[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A282096
Coefficients in q-expansion of E_2*E_6, where E_2, E_6 are the Eisenstein series shown in A006352, A013973, respectively.
Original entry on oeis.org
1, -528, -4608, 312384, 3664416, 21745440, 86782464, 276703872, 741794400, 1758969264, 3797729280, 7568097984, 14222957952, 25253852064, 43166426112, 70518360960, 112406614752, 172631876832, 260795119104, 381636168000, 552633117120, 778105665024
Offset: 0
-
terms = 22;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E2[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282208
Coefficients in q-expansion of E_2^2*E_4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.
Original entry on oeis.org
1, 192, -8928, 9984, 1420896, 11433600, 53760384, 187233792, 533725920, 1327018944, 2953851840, 6060858624, 11611915392, 21030301824, 36387585792, 60357358080, 97020376032, 150755202432, 229107724704, 338493223680, 492378465600, 698632525824, 980953593984
Offset: 0
-
terms = 23;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^2*E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282210
Coefficients in q-expansion of E_2^4, where E_2 is the Eisenstein series shown in A006352.
Original entry on oeis.org
1, -96, 3168, -34944, -107808, 1955520, 16829568, 76708608, 258593760, 715480608, 1729546560, 3771497088, 7581237888, 14296261056, 25520442624, 43590539520, 71582414304, 113752634688, 175604039136, 264097115520, 388619703360, 559658001408, 792716685696
Offset: 0
-
terms = 23;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A377973
Expansion of the 96th root of the series 2*E_2(x) - E_2(x)^2, where E_2 is the Eisenstein series of weight 2.
Original entry on oeis.org
1, 0, -6, -36, -1812, -20748, -773340, -12237456, -386587650, -7368446268, -211914644940, -4517757977820, -123221458979940, -2814502962357420, -74551748141034552, -1778129476480366320, -46377354051910716180, -1137191336376638407704, -29438532048777299115090, -735051729258136807204140
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(2) - E(2)^2)^(1/96), q = 0, n),n = 0..20);
-
terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E2[x]^2)^(1/96), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A282431
Coefficients in q-expansion of E_2^5, where E_2 is the Eisenstein series A006352.
Original entry on oeis.org
1, -120, 5400, -104160, 511800, 6770736, -19504800, -452207040, -2959622280, -12932941080, -44497080432, -129918587040, -335811977760, -788655411600, -1714912983360, -3498061536576, -6761506680840, -12481939678320, -22138262633160, -37922739116640
Offset: 0
-
terms = 20;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A319134
Expansion of -((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(3657830400*delta^2) where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively and delta is A000594.
Original entry on oeis.org
1, 86, 3750, 109672, 2419462, 43021728, 643548464, 8343640624, 95835049605, 991606081332, 9364586280842, 81571540591968, 661034448807902, 5019357866562208, 35927279225314344, 243657157464337888, 1572638456431119570, 9696997279843999470, 57313953586222481126, 325672739267123628976
Offset: 1
((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(delta^2) = - 3657830400*q - 314573414400*q^2 - 13716864000000*q^3 - 401161575628800*q^4 - ... .
- Seiichi Manyama, Table of n, a(n) for n = 1..5000
- H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska, The sphere packing problem in dimension 24, Annals of Mathematics, 185 (3) (2017), 1017-1033.
- Wikipedia, Sphere packing
-
nmax = 25; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); Rest[CoefficientList[Series[-((25*E4[x]^4 - 49*E6[x]^2*E4[x]) + 48*E6[x]*E4[x]^2*E2[x] + (-49*E4[x]^3 + 25*E6[x]^2)* E2[x]^2) / (3657830400 * x^2 * QPochhammer[x]^48), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 12 2018 *)
Showing 1-10 of 11 results.
Comments