cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A282050 Coefficients in q-expansion of (E_4^2 - E_2*E_6)/1008, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 66, 732, 4228, 15630, 48312, 117656, 270600, 533637, 1031580, 1771572, 3094896, 4826822, 7765296, 11441160, 17318416, 24137586, 35220042, 47045900, 66083640, 86124192, 116923752, 148035912, 198079200, 244218775, 318570252, 389021400, 497449568, 594823350
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 23 2018

Examples

			a(6) = 1^6*6^1 + 2^6*3^1 + 3^6*2^1 + 6^6*1^1 = 48312.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), this sequence (phi_{6, 1}), A282060 (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145095 (-q*E'_6), A008410 (E_4^2 = E_8), A282096 (E_2*E_6).

Programs

  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E4[x]^2 - E2[x]*E6[x])/1008 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^6*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n * sigma(n, 5)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = A145095(n)/504 for n > 0.
G.f.: phi_{6, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A008410(n) - A282096(n))/1008. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^6 + p = A131472(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A001160(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(6) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-6). (End)
G.f. Sum_{k>=1} k^6*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A282102 Coefficients in q-expansion of E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -288, -129168, -1927296, 65152656, 1535768640, 15223408704, 98001292032, 474055120080, 1870878793824, 6312358836000, 18835985199744, 50831420617152, 126257508465984, 292348744636032, 637474437331200, 1319883180896592, 2610964045674432, 4963491913583664
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Comments

The series expansion of the 12th root of the generating function gives A341801. - Peter Bala, Feb 23 2021

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A013974 (E_10).
Cf. A281374 (E_2^2), A282019 (E_2*E_4), A282096 (E_2*E_6), A282101 (E_2*E_8), this sequence (E_2*E_10), A341801.

Programs

  • Mathematica
    terms = 19;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]*E4[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

A282101 Coefficients in q-expansion of E_2*E_4^2, where E_2, E_4 are the Eisenstein series shown in A006352, A004009, respectively.

Original entry on oeis.org

1, 456, 50328, -470496, -21784008, -234371664, -1446514848, -6502690752, -23328111240, -71276388312, -191952331632, -468159788448, -1052750026272, -2212261706256, -4394299104576, -8303419066176, -15060718806024, -26284654025712, -44471780630856
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A008410 (E_8).
Cf. A281374 (E_2^2), A282019 (E_2*E_4), A282096 (E_2*E_6), this sequence (E_2*E_8), A282102 (E_2*E_10).

Programs

  • Mathematica
    terms = 19;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]*E4[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

A282099 Coefficients in q-expansion of (E_2^2*E_4 - 2*E_2*E_6 + E_4^2)/1728, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 36, 252, 1168, 3150, 9072, 16856, 37440, 61317, 113400, 161172, 294336, 371462, 606816, 793800, 1198336, 1420146, 2207412, 2476460, 3679200, 4247712, 5802192, 6436872, 9434880, 9844375, 13372632, 14900760, 19687808, 20511990, 28576800, 28630112, 38347776
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Comments

Multiplicative because A001158 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^5*6^2 + 2^5*3^2 + 3^5*2^2 + 6^5*1^2 = 9072.
		

Crossrefs

Cf. A282097 (phi_{3, 2}), this sequence (phi_{5, 2}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_8 = E_4^2).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), this sequence (n^2*sigma_3(n)), A282213 (n^3*sigma_3(n)).

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^2)*DivisorSigma[3,n];Table[a[n],{n,0,32}] (* Indranil Ghosh, Feb 21 2017 *)
    nmax = 40; CoefficientList[Series[Sum[k^5*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if (n==0, 0, n^2*sigma(n, 3)); \\ Michel Marcus, Feb 21 2017

Formula

G.f.: phi_{5, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282208(n) - 2*A282096(n) + A008410(n))/1728. - Seiichi Manyama, Feb 19 2017
a(n) = n^2*A001158(n) for n > 0. - Seiichi Manyama, Feb 19 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^6 / 540. - Vaclav Kotesovec, May 09 2022
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-5). (End)
G.f.: Sum_{k>=1} k^5*x^k*(1 + x^k)/(1 - x^k)^3. - Vaclav Kotesovec, Aug 02 2025

A282211 Coefficients in q-expansion of (6*E_2^2*E_4 - 8*E_2*E_6 + 3*E_4^2 - E_2^4)/6912, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 24, 108, 448, 750, 2592, 2744, 7680, 9477, 18000, 15972, 48384, 30758, 65856, 81000, 126976, 88434, 227448, 137180, 336000, 296352, 383328, 292008, 829440, 484375, 738192, 787320, 1229312, 731670, 1944000, 953312, 2064384, 1724976
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^4*6^3 + 2^4*3^3 + 3^4*2^3 + 6^4*1^3 = 2592.
		

Crossrefs

Cf. this sequence (phi_{4, 3}), A282213 (phi_{6, 3}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_4^2 = E_8), A282210 (E_2^4).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), A282097 (n^2*sigma(n)), this sequence (n^3*sigma(n)).

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^3)*DivisorSigma[1,n];Table[a[n],{n,0,33}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    a(n) = if (n==0, 0, n^3*sigma(n)); \\ Michel Marcus, Feb 21 2017

Formula

G.f.: phi_{4, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (6*A282208(n) - 8*A282096(n) + 3*A008410(n) - A282210(n))/6912.
a(n) = n^3*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: A(q) = Sum_{n >= 1} n^3*q^n*(q^(3*n) + 11*q^(2*n) + 11*q^n + 1)/(1 - q^n)^5. A faster converging series may be found by applying the operator x*d/dx once to equation 5 in Arndt, setting x = 1, and then applying the operator q*d/dq three times to the resulting equation. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-4). (End)
G.f.: A(q) = Sum_{n >= 1} n^4*q^n*(q^(2*n) + 4*q^n + 1)/(1 - q^n)^4. - Mamuka Jibladze, Aug 27 2024

A282576 Coefficients in q-expansion of E_2*E_6^2, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, -1032, 244872, 11293536, -12738264, -6174312624, -106952602464, -1012788556608, -6677393391000, -34223823782376, -145162615601232, -530968614112224, -1722312703896288, -5059890748287984, -13673195356609728, -34406230066992576, -81397361282611992
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A013973 (E_6), A282096 (E_2*E_6).

Programs

  • Mathematica
    terms = 17;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282780 Coefficients in q-expansion of E_2^3*E_6, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, -576, 21168, 308736, -15034608, -39208320, 1590712128, 20299281408, 137107250640, 665776675008, 2599125524640, 8637331788288, 25350641846208, 67336913702016, 164742803455104, 376186503674880, 809848148403024, 1657081821679488, 3243133560510576
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Crossrefs

Cf. A282096 (E_2*E_6), A282595 (E_2^2*E_6), this sequence (E_2^3*E_6).

Programs

  • Mathematica
    terms = 19;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]^3*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Showing 1-7 of 7 results.