cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A282060 Coefficients in q-expansion of E_4*(E_2*E_4 - E_6)/720, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 258, 6564, 66052, 390630, 1693512, 5764808, 16909320, 43066413, 100782540, 214358892, 433565328, 815730734, 1487320464, 2564095320, 4328785936, 6975757458, 11111134554, 16983563060, 25801892760, 37840199712, 55304594136, 78310985304, 110992776480
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A013955 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^8*6^1 + 2^8*3^1 + 3^8*2^1 + 6^8*1^1 = 1693512.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), this sequence (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282101 (E_2*E_4^2), A013974 (E_4*E_6 = E_10).

Programs

  • Mathematica
    terms = 25;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*(E2[x]*E4[x] - E6[x])/720 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[7, n], {n, 0, 24}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^8*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 7)) \\ Andrew Howroyd, Jul 25 2018

Formula

G.f.: phi_{8, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282101(n) - A013974(n))/720. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^8 + p = A196288(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A013955(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(8) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-8). (End)
G.f. Sum_{k>=1} k^8*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A386785 a(n) = n^4*sigma_5(n).

Original entry on oeis.org

0, 1, 528, 19764, 270592, 1953750, 10435392, 40356008, 138547200, 389021373, 1031580000, 2357962332, 5347980288, 10604527934, 21307972224, 38613915000, 70936231936, 118587960018, 205403284944, 322687828100, 528669120000, 797596142112, 1245004111296, 1801152941304, 2738246860800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(5, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^4*DivisorSigma[5, n], {n, 0, 30}]
    (* or *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 502*x^k + 14608*x^(2*k) + 88234*x^(3*k) + 156190*x^(4*k) + 88234*x^(5*k) + 14608*x^(6*k) + 502*x^(7*k) + x^(8*k))/(1 - x^k)^10, {k, 1, nmax}], {x, 0, nmax}], x]
    (* or *)
    terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(4*E2[x]^3*E4[x]^2 + 2*E2[x]*E4[x]^3 - E2[x]^4*E6[x] - 6*E2[x]^2*E4[x]*E6[x] - E4[x]^2*E6[x] + 2*E2[x]*E6[x]^2)/3456, {x, 0, terms}], x]

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 502*x^k + 14608*x^(2*k) + 88234*x^(3*k) + 156190*x^(4*k) + 88234*x^(5*k) + 14608*x^(6*k) + 502*x^(7*k) + x^(8*k))/(1 - x^k)^10.
a(n) = (4*A386813(n) + 2*A282549(n) - A386814(n) - 6*A282792(n) - A058550(n) + 2*A282576(n))/3456.
a(n) = n^4*A001160(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-9). - R. J. Mathar, Aug 03 2025

A282254 Coefficients in q-expansion of (3*E_4^3 + 2*E_6^2 - 5*E_2*E_4*E_6)/1584, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 1026, 59052, 1050628, 9765630, 60587352, 282475256, 1075843080, 3486961557, 10019536380, 25937424612, 62041684656, 137858491862, 289819612656, 576679982760, 1101663313936, 2015993900466, 3577622557482, 6131066257820, 10260044315640
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 25 2018
D. H. Lehmer shows that a(n) == tau(n) (mod 7) for n > 0, where tau is Ramanujan's tau function (A000594). Furthermore, if n == 3, 5, 6 (mod 7) then a(n) == tau(n) (mod 49). See the Wikipedia link below. - Jianing Song, Aug 12 2020

Examples

			a(6) = 1^10*6^1 + 2^10*3^1 + 3^10*2^1 + 6^10*1^1 = 60587352.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), this sequence (phi_{10, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008411 (E_4^3), A280869 (E_6^2), A282102 (E_2*E_4*E_6).

Programs

  • Mathematica
    Table[If[n>0, n * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

G.f.: phi_{10, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (3*A008411(n) + 2*A280869(n) - 5*A282102(n))/1584.
If p is a prime, a(p) = p^10 + p = A196292(p).
a(n) = n*A013957(n) for n > 0, where A013957(n) is sigma_9(n), the sum of the 9th powers of the divisors of n. - Seiichi Manyama, Feb 18 2017
Multiplicative with a(p^e) = p^e*(p^(9*(e+1))-1)/(p^9-1). - Jianing Song, Aug 12 2020
From Amiram Eldar, Oct 30 2023: (Start)
Dirichlet g.f.: zeta(s-1)*zeta(s-10).
Sum_{k=1..n} a(k) ~ zeta(10) * n^11 / 11. (End)

A282751 Expansion of phi_{7, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 132, 2196, 16912, 78150, 289872, 823592, 2164800, 4802733, 10315800, 19487292, 37138752, 62748686, 108714144, 171617400, 277094656, 410338962, 633960756, 893872100, 1321672800, 1808608032, 2572322544, 3404825976, 4753900800, 6105469375, 8282826552
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), this sequence (phi_{7, 2}), A282753 (phi_{9, 2}).
Cf. A282101 (E_2*E_4^2), A282595 (E_2^2*E_6), A013974 (E_4*E_6 = E_10).
Cf. A001160 (sigma_5(n)), A282050 (n*sigma_5(n)), this sequence (n^2*sigma_5(n)).
Cf. A013664.

Programs

  • Mathematica
    Table[n^2 * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[Sum[k^7*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n^2*sigma(n, 5)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n^2*A001160(n) for n > 0.
a(n) = (2*A282101(n) - A282595(n) - A013974(n))/1728.
Sum_{k=1..n} a(k) ~ zeta(6) * n^8 / 8. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-7). (End)
G.f.: Sum_{k>=1} k^7*x^k*(1 + x^k)/(1 - x^k)^3. - Vaclav Kotesovec, Aug 02 2025

A386749 a(n) = n*sigma_4(n).

Original entry on oeis.org

0, 1, 34, 246, 1092, 3130, 8364, 16814, 34952, 59787, 106420, 161062, 268632, 371306, 571676, 769980, 1118480, 1419874, 2032758, 2476118, 3417960, 4136244, 5476108, 6436366, 8598192, 9781275, 12624404, 14528268, 18360888, 20511178, 26179320, 28629182, 35791392, 39621252
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
    
  • Mathematica
    Table[n*DivisorSigma[4, n], {n, 0, 50}]
    nmax = 50; CoefficientList[Series[x*Sum[k^5*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    a(n) = if (n, n*sigma(n,4), 0); \\ Michel Marcus, Aug 02 2025

Formula

G.f.: Sum_{k>=1} k^5*x^(k-1)/(1 - x^k)^2.
a(n) = n*A001159(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-5). - R. J. Mathar, Aug 03 2025

A386750 a(n) = n*sigma_6(n).

Original entry on oeis.org

0, 1, 130, 2190, 16644, 78130, 284700, 823550, 2130440, 4789539, 10156900, 19487182, 36450360, 62748530, 107061500, 171104700, 272696336, 410338690, 622640070, 893871758, 1300395720, 1803574500, 2533333660, 3404825470, 4665663600, 6103906275, 8157308900, 10474721820
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*DivisorSigma(6,n): n in [1..25]]; // Vincenzo Librandi, Aug 02 2025
  • Mathematica
    Table[n*DivisorSigma[6, n], {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x*Sum[k^7*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^7*x^(k-1)/(1 - x^k)^2.
a(n) = n*A013954(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-7). - R. J. Mathar, Aug 03 2025

A386751 a(n) = n*sigma_8(n).

Original entry on oeis.org

0, 1, 514, 19686, 263172, 1953130, 10118604, 40353614, 134744072, 387479547, 1003908820, 2357947702, 5180803992, 10604499386, 20741757596, 38449317180, 68988964880, 118587876514, 199164487158, 322687697798, 514009128360, 794401245204, 1211985118828, 1801152661486
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*DivisorSigma(8,n): n in [1..25]]; // Vincenzo Librandi, Aug 02 2025
  • Mathematica
    Table[n*DivisorSigma[8, n], {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x*Sum[k^9*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^9*x^(k-1)/(1 - x^k)^2.
a(n) = n*A013956(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-9). - R. J. Mathar, Aug 03 2025

A282781 Expansion of phi_{8, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 264, 6588, 67648, 390750, 1739232, 5765144, 17318400, 43224597, 103158000, 214360212, 445665024, 815732918, 1521998016, 2574261000, 4433514496, 6975762354, 11411293608, 16983569900, 26433456000, 37980768672, 56591095968, 78310997448
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A282211 (phi_{4, 3}), A282213 (phi_{6, 3}), this sequence (phi_{8, 3}).
Cf. A282752 (E_2^2*E_4^2), A282780 (E_2^3*E_6), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A001160 (sigma_5(n)), A282050 (n*sigma_5(n)), A282751 (n^2*sigma_5(n)), this sequence (n^3*sigma_5(n)).
Cf. A013664.

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^3)*DivisorSigma[5,n];Table[a[n],{n,0,23}] (* Indranil Ghosh, Feb 21 2017 *)
    nmax = 30; CoefficientList[Series[Sum[k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if (n==0, 0, n^3*sigma(n, 5)); \\ Michel Marcus, Feb 21 2017

Formula

a(n) = n^3*A001160(n) for n > 0.
a(n) = (6*A282752(n) - 2*A282780(n) - 6*A282102(n) + A008411(n) + A280869(n))/5184.
Sum_{k=1..n} a(k) ~ zeta(6) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-8). (End)
G.f.: Sum_{k>=1} k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Vaclav Kotesovec, Aug 02 2025

A282548 Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Comments

Multiplicative because A013959 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
Cf. A282549 (E_2*E_4^3), A282576 (E_2*E_6^2), A058550 (E_14).
Cf. A013670.

Programs

  • Mathematica
    Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013959(n) for n > 0.
a(n) = (441*A282549(n) + 250*A282576(n) - 691*A058550(n))/65520.
Sum_{k=1..n} a(k) ~ zeta(12) * n^13 / 13. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(11*e+11)-1)/(p^11-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-12). (End)

A282597 Expansion of phi_{14, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 16386, 4782972, 268468228, 6103515630, 78373779192, 678223072856, 4398583447560, 22876806803877, 100012207113180, 379749833583252, 1284076017413616, 3937376385699302, 11113363271818416, 29192944359852360, 72066391204823056, 168377826559400946
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2017

Keywords

Comments

Multiplicative because A013961 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), this sequence (phi_{14, 1}).
Cf. A282012 (E_4^4), A282287 (E_4*E_6^2), A282596 (E_2*E_4^2*E_6).
Cf. A013672.

Programs

  • Mathematica
    Table[n * DivisorSigma[13, n], {n, 0, 17}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 13)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013961(n) for n > 0.
a(n) = (3*A282012(n) + 4*A282287(n) - 7*A282596(n))/144.
Sum_{k=1..n} a(k) ~ zeta(14) * n^15 / 15. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(13*e+13)-1)/(p^13-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-14). (End)
Showing 1-10 of 11 results. Next